Handwritten Signature Identification and Fraud Detection using Deep Learning and Computer Vision

计算机科学 计算机安全 尺度不变特征变换 卷积神经网络 人工智能 鉴定(生物学) Orb(光学) 认证(法律) 签名(拓扑) 上传 架空(工程) 过程(计算) 机器学习 模式识别(心理学) 特征提取 万维网 图像(数学) 操作系统 生物 植物 数学 几何学
作者
B Vinod,A.M. Senthil Kumar
标识
DOI:10.1109/icscds56580.2023.10104929
摘要

Secure authentication plays a major role in ensuring the identity of a person. Everyone has an individual and unique signature, which is used as their personal identification in all their legal transactions. Even though a lot of things got digitalized, traditional signatures are still used in a lot of places, such as check payments and government offices, and they still rely on a human manually verifying them. As the customer base keeps increasing, this will become a greater and greater problem in the near future. So, forgery detection plays a key role in reducing these kinds of overhead. Manual verification is not only difficult to check if two signatures are the same but also very time-consuming. Pandemic further made people do tasks digitally, which also included uploading their own signatures digitally. This increases the urgency of implementing a system to identify and verify the user’s signature. A lot of existing techniques are patented now, and few are less effective. This paper proposes a method to pre-process the signature to make verification simple as well as use methods like the Convolution Neural Network (CNN), Scale Invariant Feature Transform (SIFT), Oriented FAST and Robust BRIEF (ORB), and Mean Square Error (MSE) to identify forged signatures and compare the results obtained with various parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TJC发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
大钱完成签到,获得积分10
1秒前
1秒前
JamesPei应助白方明采纳,获得10
1秒前
Singularity应助Tracy麦子采纳,获得10
1秒前
听话的靖柏完成签到 ,获得积分10
2秒前
HYH发布了新的文献求助10
2秒前
2秒前
chegen完成签到,获得积分20
2秒前
_ban完成签到 ,获得积分10
3秒前
万能图书馆应助啧啧啧采纳,获得10
3秒前
思量博千金完成签到,获得积分10
4秒前
5秒前
5秒前
科研通AI5应助Kaolala采纳,获得10
5秒前
小高发布了新的文献求助10
5秒前
科研土人完成签到,获得积分10
5秒前
虎帅发布了新的文献求助10
6秒前
YBR驳回了赘婿应助
6秒前
亿篇文献发布了新的文献求助10
6秒前
7秒前
7秒前
等等完成签到,获得积分10
8秒前
羲和完成签到,获得积分10
9秒前
9秒前
Jasper应助哈哈采纳,获得10
10秒前
Hsu发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
wanci应助舒适的平蓝采纳,获得10
12秒前
12秒前
13秒前
所所应助zzzhw采纳,获得30
13秒前
企鹅完成签到,获得积分10
13秒前
虎帅完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481607
求助须知:如何正确求助?哪些是违规求助? 3071658
关于积分的说明 9123400
捐赠科研通 2763408
什么是DOI,文献DOI怎么找? 1516476
邀请新用户注册赠送积分活动 701579
科研通“疑难数据库(出版商)”最低求助积分说明 700426