Deep learning versus conventional methods for missing data imputation: A review and comparative study

计算机科学 插补(统计学) 缺少数据 稳健性(进化) 深度学习 人工智能 嵌入 样本量测定 推论 机器学习 数据挖掘 统计 数学 生物化学 化学 基因
作者
Yige Sun,Jing Li,Yifan Xu,Tingting Zhang,Xiaofeng Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120201-120201 被引量:173
标识
DOI:10.1016/j.eswa.2023.120201
摘要

Deep learning models have been recently proposed in the applications of missing data imputation. In this paper, we review the popular statistical, machine learning, and deep learning approaches, and discuss the advantages and disadvantages of these methods. We conduct a comprehensive numerical study to compare the performance of several widely-used imputation methods for incomplete tabular (structured) data. Specifically, we compare the deep learning methods: generative adversarial imputation networks (GAIN) with onehot encoding, GAIN with embedding, variational auto-encoder (VAE) with onehot encoding, and VAE with embedding versus two conventional methods: multiple imputation by chained equations (MICE) and missForest. Seven real benchmark datasets and three simulated datasets are considered, including various scenarios with different feature types under different levels of sample sizes. The missing data are generated based on different missing ratios and three kinds of missing mechanisms: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). Our experiments show that, for small or moderate sample sizes, the conventional methods establish better robustness and imputation performance than the deep learning methods. GAINs only perform well in the case of MCAR and often fail in the cases of MAR and MNAR. VAEs are easy to fall into mode collapse in all missing mechanisms. We conclude that the conventional methods, MICE and missForest, are preferable for practitioners to deal with missing data imputation for tabular data with a limited sample size (i.e., n<30,000) in real case analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
限量版小祸害完成签到 ,获得积分10
3秒前
wenwen完成签到 ,获得积分10
4秒前
科研通AI6.2应助XS_QI采纳,获得10
4秒前
朴素的飞丹完成签到 ,获得积分10
5秒前
典雅的宝马完成签到,获得积分10
6秒前
明理芒果给明理芒果的求助进行了留言
7秒前
清爽的易真完成签到,获得积分10
7秒前
7秒前
1282941496完成签到,获得积分10
8秒前
Jasper应助书雪采纳,获得10
9秒前
墨染完成签到 ,获得积分10
13秒前
科研通AI6.2应助czx采纳,获得30
14秒前
14秒前
15秒前
米线完成签到 ,获得积分10
15秒前
虚拟的铃铛完成签到,获得积分10
16秒前
shuo完成签到 ,获得积分20
16秒前
16秒前
Qvby3完成签到 ,获得积分10
17秒前
阿兹卡班完成签到 ,获得积分10
17秒前
魔幻妖妖发布了新的文献求助10
19秒前
Owen应助budingman采纳,获得10
20秒前
21秒前
21秒前
21秒前
书雪发布了新的文献求助10
22秒前
魔幻妖妖完成签到,获得积分10
24秒前
June完成签到,获得积分10
24秒前
研友_nqBP4Z发布了新的文献求助10
26秒前
nihao完成签到,获得积分10
26秒前
26秒前
阿喵完成签到 ,获得积分10
26秒前
Lyn完成签到 ,获得积分10
27秒前
活力的青旋完成签到 ,获得积分10
27秒前
feizhuliu完成签到,获得积分10
27秒前
Tree_QD发布了新的文献求助10
28秒前
song完成签到,获得积分10
29秒前
领导范儿应助Cloud采纳,获得10
30秒前
风中的外套完成签到,获得积分10
31秒前
lizishu应助June采纳,获得10
32秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847516
求助须知:如何正确求助?哪些是违规求助? 6226943
关于积分的说明 15620380
捐赠科研通 4964176
什么是DOI,文献DOI怎么找? 2676458
邀请新用户注册赠送积分活动 1621027
关于科研通互助平台的介绍 1576958