Deep learning versus conventional methods for missing data imputation: A review and comparative study

计算机科学 插补(统计学) 缺少数据 稳健性(进化) 深度学习 人工智能 嵌入 样本量测定 推论 机器学习 数据挖掘 统计 数学 生物化学 基因 化学
作者
Yige Sun,Jing Li,Yifan Xu,Tingting Zhang,Xiaofeng Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120201-120201 被引量:34
标识
DOI:10.1016/j.eswa.2023.120201
摘要

Deep learning models have been recently proposed in the applications of missing data imputation. In this paper, we review the popular statistical, machine learning, and deep learning approaches, and discuss the advantages and disadvantages of these methods. We conduct a comprehensive numerical study to compare the performance of several widely-used imputation methods for incomplete tabular (structured) data. Specifically, we compare the deep learning methods: generative adversarial imputation networks (GAIN) with onehot encoding, GAIN with embedding, variational auto-encoder (VAE) with onehot encoding, and VAE with embedding versus two conventional methods: multiple imputation by chained equations (MICE) and missForest. Seven real benchmark datasets and three simulated datasets are considered, including various scenarios with different feature types under different levels of sample sizes. The missing data are generated based on different missing ratios and three kinds of missing mechanisms: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). Our experiments show that, for small or moderate sample sizes, the conventional methods establish better robustness and imputation performance than the deep learning methods. GAINs only perform well in the case of MCAR and often fail in the cases of MAR and MNAR. VAEs are easy to fall into mode collapse in all missing mechanisms. We conclude that the conventional methods, MICE and missForest, are preferable for practitioners to deal with missing data imputation for tabular data with a limited sample size (i.e., n<30,000) in real case analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助端庄铃铛采纳,获得10
刚刚
1秒前
谁家那小谁完成签到,获得积分10
1秒前
不将就完成签到,获得积分10
2秒前
百合子发布了新的文献求助20
2秒前
笑点低一手完成签到,获得积分10
2秒前
zeng完成签到,获得积分10
2秒前
爆米花应助研友_楼灵煌采纳,获得10
3秒前
popo6150完成签到,获得积分10
3秒前
於伟祺完成签到,获得积分10
3秒前
3秒前
王彤彤发布了新的文献求助10
3秒前
vincy完成签到 ,获得积分10
3秒前
搞份炸鸡778完成签到,获得积分10
3秒前
terrell完成签到,获得积分10
4秒前
8R60d8应助靖靖吖采纳,获得10
6秒前
6秒前
善学以致用应助夏冉采纳,获得10
6秒前
时尚的梦曼完成签到,获得积分10
6秒前
7秒前
Zhou完成签到,获得积分10
7秒前
8秒前
8秒前
努力发一区完成签到 ,获得积分10
8秒前
April完成签到 ,获得积分10
8秒前
清风明月发布了新的文献求助10
10秒前
ju关闭了ju文献求助
10秒前
Lucas应助Rickyp采纳,获得10
10秒前
一只大肥猫完成签到,获得积分10
11秒前
11秒前
冻冻妖完成签到,获得积分10
11秒前
友好的哈密瓜完成签到 ,获得积分10
11秒前
zho完成签到,获得积分0
12秒前
z7777777发布了新的文献求助10
12秒前
端庄铃铛发布了新的文献求助10
13秒前
谢谢完成签到 ,获得积分10
13秒前
13秒前
难过的蘑菇完成签到,获得积分10
13秒前
13秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180142
求助须知:如何正确求助?哪些是违规求助? 2830541
关于积分的说明 7978378
捐赠科研通 2492125
什么是DOI,文献DOI怎么找? 1329213
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954