Deep learning versus conventional methods for missing data imputation: A review and comparative study

计算机科学 插补(统计学) 缺少数据 稳健性(进化) 深度学习 人工智能 嵌入 样本量测定 推论 机器学习 数据挖掘 统计 数学 生物化学 基因 化学
作者
Yige Sun,Jing Li,Yifan Xu,Tingting Zhang,Xiaofeng Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:227: 120201-120201 被引量:82
标识
DOI:10.1016/j.eswa.2023.120201
摘要

Deep learning models have been recently proposed in the applications of missing data imputation. In this paper, we review the popular statistical, machine learning, and deep learning approaches, and discuss the advantages and disadvantages of these methods. We conduct a comprehensive numerical study to compare the performance of several widely-used imputation methods for incomplete tabular (structured) data. Specifically, we compare the deep learning methods: generative adversarial imputation networks (GAIN) with onehot encoding, GAIN with embedding, variational auto-encoder (VAE) with onehot encoding, and VAE with embedding versus two conventional methods: multiple imputation by chained equations (MICE) and missForest. Seven real benchmark datasets and three simulated datasets are considered, including various scenarios with different feature types under different levels of sample sizes. The missing data are generated based on different missing ratios and three kinds of missing mechanisms: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). Our experiments show that, for small or moderate sample sizes, the conventional methods establish better robustness and imputation performance than the deep learning methods. GAINs only perform well in the case of MCAR and often fail in the cases of MAR and MNAR. VAEs are easy to fall into mode collapse in all missing mechanisms. We conclude that the conventional methods, MICE and missForest, are preferable for practitioners to deal with missing data imputation for tabular data with a limited sample size (i.e., n<30,000) in real case analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DreamLover完成签到,获得积分10
1秒前
2秒前
小白完成签到 ,获得积分10
2秒前
娇气的摩托完成签到,获得积分10
2秒前
future完成签到 ,获得积分10
2秒前
奥沙利楠完成签到,获得积分10
3秒前
马听云完成签到,获得积分10
3秒前
5秒前
默默雪旋完成签到 ,获得积分10
7秒前
fw发布了新的文献求助10
7秒前
多吃香菜完成签到,获得积分10
7秒前
8秒前
faiting完成签到,获得积分10
8秒前
Jameson完成签到,获得积分10
9秒前
9秒前
五斤老陈醋完成签到,获得积分10
9秒前
9秒前
小康学弟完成签到 ,获得积分10
10秒前
juwish完成签到,获得积分10
10秒前
背后的小白菜完成签到,获得积分10
10秒前
ZZQ完成签到 ,获得积分20
10秒前
Tetrahydron发布了新的文献求助10
11秒前
神圣先知完成签到,获得积分10
11秒前
木卫三完成签到,获得积分10
12秒前
wangyr11完成签到,获得积分10
12秒前
明理的青寒完成签到,获得积分10
13秒前
科研小白完成签到,获得积分10
13秒前
kdkddk完成签到,获得积分10
14秒前
谢言一完成签到,获得积分10
15秒前
机智采枫完成签到 ,获得积分10
15秒前
吾侪发布了新的文献求助10
15秒前
南城完成签到 ,获得积分10
15秒前
豆西豆完成签到,获得积分10
16秒前
方羽发布了新的文献求助10
16秒前
zhoull发布了新的文献求助20
16秒前
Pampers完成签到,获得积分10
17秒前
17秒前
liu完成签到,获得积分10
18秒前
笨笨小蚂蚁完成签到 ,获得积分10
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478