Impact of Artificial Intelligence System and Volumetric Density on Risk Prediction of Interval, Screen-Detected, and Advanced Breast Cancer

医学 乳腺癌 乳腺摄影术 置信区间 优势比 癌症 逻辑回归 内科学 肿瘤科
作者
Celine M. Vachon,Christopher G. Scott,Aaron D. Norman,Sadia Khanani,Matthew R. Jensen,Carrie B. Hruska,Kathleen R. Brandt,Stacey J. Winham,Karla Kerlikowske
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:41 (17): 3172-3183 被引量:1
标识
DOI:10.1200/jco.22.01153
摘要

Artificial intelligence (AI) algorithms improve breast cancer detection on mammography, but their contribution to long-term risk prediction for advanced and interval cancers is unknown.We identified 2,412 women with invasive breast cancer and 4,995 controls matched on age, race, and date of mammogram, from two US mammography cohorts, who had two-dimensional full-field digital mammograms performed 2-5.5 years before cancer diagnosis. We assessed Breast Imaging Reporting and Data System density, an AI malignancy score (1-10), and volumetric density measures. We used conditional logistic regression to estimate odds ratios (ORs), 95% CIs, adjusted for age and BMI, and C-statistics (AUC) to describe the association of AI score with invasive cancer and its contribution to models with breast density measures. Likelihood ratio tests (LRTs) and bootstrapping methods were used to compare model performance.On mammograms between 2-5.5 years prior to cancer, a one unit increase in AI score was associated with 20% greater odds of invasive breast cancer (OR, 1.20; 95% CI, 1.17 to 1.22; AUC, 0.63; 95% CI, 0.62 to 0.64) and was similarly predictive of interval (OR, 1.20; 95% CI, 1.13 to 1.27; AUC, 0.63) and advanced cancers (OR, 1.23; 95% CI, 1.16 to 1.31; AUC, 0.64) and in dense (OR, 1.18; 95% CI, 1.15 to 1.22; AUC, 0.66) breasts. AI score improved prediction of all cancer types in models with density measures (PLRT values < .001); discrimination improved for advanced cancer (ie, AUC for dense volume increased from 0.624 to 0.679, Δ AUC 0.065, P = .01) but did not reach statistical significance for interval cancer.AI imaging algorithms coupled with breast density independently contribute to long-term risk prediction of invasive breast cancers, in particular, advanced cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
英姑应助科研通管家采纳,获得10
1秒前
LJ发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
HY完成签到,获得积分10
3秒前
Loooong发布了新的文献求助10
3秒前
yy完成签到,获得积分10
3秒前
狂野忆文发布了新的文献求助10
4秒前
abc完成签到,获得积分10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027