Impact of Artificial Intelligence System and Volumetric Density on Risk Prediction of Interval, Screen-Detected, and Advanced Breast Cancer

医学 乳腺癌 乳腺摄影术 置信区间 优势比 癌症 逻辑回归 内科学 肿瘤科
作者
Celine M. Vachon,Christopher G. Scott,Aaron D. Norman,Sadia Khanani,Matthew R. Jensen,Carrie B. Hruska,Kathleen R. Brandt,Stacey J. Winham,Karla Kerlikowske
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:41 (17): 3172-3183 被引量:1
标识
DOI:10.1200/jco.22.01153
摘要

Artificial intelligence (AI) algorithms improve breast cancer detection on mammography, but their contribution to long-term risk prediction for advanced and interval cancers is unknown.We identified 2,412 women with invasive breast cancer and 4,995 controls matched on age, race, and date of mammogram, from two US mammography cohorts, who had two-dimensional full-field digital mammograms performed 2-5.5 years before cancer diagnosis. We assessed Breast Imaging Reporting and Data System density, an AI malignancy score (1-10), and volumetric density measures. We used conditional logistic regression to estimate odds ratios (ORs), 95% CIs, adjusted for age and BMI, and C-statistics (AUC) to describe the association of AI score with invasive cancer and its contribution to models with breast density measures. Likelihood ratio tests (LRTs) and bootstrapping methods were used to compare model performance.On mammograms between 2-5.5 years prior to cancer, a one unit increase in AI score was associated with 20% greater odds of invasive breast cancer (OR, 1.20; 95% CI, 1.17 to 1.22; AUC, 0.63; 95% CI, 0.62 to 0.64) and was similarly predictive of interval (OR, 1.20; 95% CI, 1.13 to 1.27; AUC, 0.63) and advanced cancers (OR, 1.23; 95% CI, 1.16 to 1.31; AUC, 0.64) and in dense (OR, 1.18; 95% CI, 1.15 to 1.22; AUC, 0.66) breasts. AI score improved prediction of all cancer types in models with density measures (PLRT values < .001); discrimination improved for advanced cancer (ie, AUC for dense volume increased from 0.624 to 0.679, Δ AUC 0.065, P = .01) but did not reach statistical significance for interval cancer.AI imaging algorithms coupled with breast density independently contribute to long-term risk prediction of invasive breast cancers, in particular, advanced cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刻苦黎云完成签到,获得积分10
1秒前
lila发布了新的文献求助20
1秒前
duyuzhen发布了新的文献求助10
2秒前
jess发布了新的文献求助10
2秒前
陈cf77完成签到,获得积分10
3秒前
风吹独自凉完成签到,获得积分10
3秒前
4秒前
plan完成签到,获得积分10
4秒前
asheng98完成签到,获得积分10
6秒前
阳光一江完成签到 ,获得积分10
6秒前
6秒前
落井下石的哲学家完成签到,获得积分10
7秒前
小丁完成签到,获得积分10
7秒前
8秒前
Daphne发布了新的文献求助10
8秒前
9秒前
one发布了新的文献求助20
10秒前
aqqq完成签到,获得积分10
10秒前
怡然帅完成签到 ,获得积分10
10秒前
阳光一江关注了科研通微信公众号
10秒前
10秒前
英姑应助攀婷小可爱采纳,获得10
10秒前
11秒前
科研通AI5应助having采纳,获得10
11秒前
11秒前
yang发布了新的文献求助10
12秒前
FashionBoy应助暴躁的香氛采纳,获得10
12秒前
Jasper应助不爱科研采纳,获得10
13秒前
酷波er应助洁净的士晋采纳,获得10
13秒前
胜天半子完成签到,获得积分10
14秒前
宋百言发布了新的文献求助30
15秒前
小台发布了新的文献求助30
15秒前
15秒前
15秒前
speedness发布了新的文献求助10
15秒前
大个应助ff采纳,获得10
15秒前
vivid完成签到,获得积分10
15秒前
16秒前
科研通AI5应助孟__采纳,获得30
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669071
求助须知:如何正确求助?哪些是违规求助? 3226937
关于积分的说明 9772436
捐赠科研通 2936914
什么是DOI,文献DOI怎么找? 1608903
邀请新用户注册赠送积分活动 760008
科研通“疑难数据库(出版商)”最低求助积分说明 735721