Impact of Artificial Intelligence System and Volumetric Density on Risk Prediction of Interval, Screen-Detected, and Advanced Breast Cancer

医学 乳腺癌 乳腺摄影术 置信区间 优势比 癌症 逻辑回归 内科学 肿瘤科
作者
Celine M. Vachon,Christopher G. Scott,Aaron D. Norman,Sadia Khanani,Matthew R. Jensen,Carrie B. Hruska,Kathleen R. Brandt,Stacey J. Winham,Karla Kerlikowske
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:41 (17): 3172-3183 被引量:1
标识
DOI:10.1200/jco.22.01153
摘要

Artificial intelligence (AI) algorithms improve breast cancer detection on mammography, but their contribution to long-term risk prediction for advanced and interval cancers is unknown.We identified 2,412 women with invasive breast cancer and 4,995 controls matched on age, race, and date of mammogram, from two US mammography cohorts, who had two-dimensional full-field digital mammograms performed 2-5.5 years before cancer diagnosis. We assessed Breast Imaging Reporting and Data System density, an AI malignancy score (1-10), and volumetric density measures. We used conditional logistic regression to estimate odds ratios (ORs), 95% CIs, adjusted for age and BMI, and C-statistics (AUC) to describe the association of AI score with invasive cancer and its contribution to models with breast density measures. Likelihood ratio tests (LRTs) and bootstrapping methods were used to compare model performance.On mammograms between 2-5.5 years prior to cancer, a one unit increase in AI score was associated with 20% greater odds of invasive breast cancer (OR, 1.20; 95% CI, 1.17 to 1.22; AUC, 0.63; 95% CI, 0.62 to 0.64) and was similarly predictive of interval (OR, 1.20; 95% CI, 1.13 to 1.27; AUC, 0.63) and advanced cancers (OR, 1.23; 95% CI, 1.16 to 1.31; AUC, 0.64) and in dense (OR, 1.18; 95% CI, 1.15 to 1.22; AUC, 0.66) breasts. AI score improved prediction of all cancer types in models with density measures (PLRT values < .001); discrimination improved for advanced cancer (ie, AUC for dense volume increased from 0.624 to 0.679, Δ AUC 0.065, P = .01) but did not reach statistical significance for interval cancer.AI imaging algorithms coupled with breast density independently contribute to long-term risk prediction of invasive breast cancers, in particular, advanced cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ghiocel完成签到,获得积分10
2秒前
2秒前
4秒前
加油干发布了新的文献求助20
4秒前
无花果应助梅育路周警官采纳,获得10
5秒前
k.o.完成签到,获得积分10
9秒前
9秒前
wanci应助烂漫映秋采纳,获得10
9秒前
10秒前
10秒前
11秒前
平安喜乐发布了新的文献求助10
14秒前
zengyiyong发布了新的文献求助10
15秒前
非鱼完成签到,获得积分10
16秒前
18秒前
平安喜乐完成签到,获得积分10
21秒前
所所应助龙行天下采纳,获得10
22秒前
22秒前
HDD完成签到,获得积分10
23秒前
小二郎应助鲜于灵竹采纳,获得10
23秒前
24秒前
Henry应助鲨鱼宝子采纳,获得200
25秒前
Hello应助zengyiyong采纳,获得10
26秒前
小绵羊发布了新的文献求助10
28秒前
可爱的函函应助浅笑_随风采纳,获得10
28秒前
要减肥的可仁完成签到,获得积分10
29秒前
han关闭了han文献求助
29秒前
wanci应助Liu采纳,获得30
34秒前
CodeCraft应助Xxi采纳,获得10
34秒前
科研通AI2S应助耍酷的丹珍采纳,获得10
35秒前
35秒前
南卡完成签到,获得积分10
36秒前
39秒前
39秒前
39秒前
鲜于灵竹发布了新的文献求助10
40秒前
情怀应助wangjiajia123采纳,获得10
40秒前
42秒前
科研通AI2S应助SPQR采纳,获得10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136629
求助须知:如何正确求助?哪些是违规求助? 2787705
关于积分的说明 7782850
捐赠科研通 2443769
什么是DOI,文献DOI怎么找? 1299401
科研通“疑难数据库(出版商)”最低求助积分说明 625440
版权声明 600954