亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impact of Artificial Intelligence System and Volumetric Density on Risk Prediction of Interval, Screen-Detected, and Advanced Breast Cancer

医学 乳腺癌 乳腺摄影术 置信区间 优势比 癌症 逻辑回归 内科学 肿瘤科
作者
Celine M. Vachon,Christopher G. Scott,Aaron D. Norman,Sadia Khanani,Matthew R. Jensen,Carrie B. Hruska,Kathleen R. Brandt,Stacey J. Winham,Karla Kerlikowske
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:41 (17): 3172-3183 被引量:1
标识
DOI:10.1200/jco.22.01153
摘要

Artificial intelligence (AI) algorithms improve breast cancer detection on mammography, but their contribution to long-term risk prediction for advanced and interval cancers is unknown.We identified 2,412 women with invasive breast cancer and 4,995 controls matched on age, race, and date of mammogram, from two US mammography cohorts, who had two-dimensional full-field digital mammograms performed 2-5.5 years before cancer diagnosis. We assessed Breast Imaging Reporting and Data System density, an AI malignancy score (1-10), and volumetric density measures. We used conditional logistic regression to estimate odds ratios (ORs), 95% CIs, adjusted for age and BMI, and C-statistics (AUC) to describe the association of AI score with invasive cancer and its contribution to models with breast density measures. Likelihood ratio tests (LRTs) and bootstrapping methods were used to compare model performance.On mammograms between 2-5.5 years prior to cancer, a one unit increase in AI score was associated with 20% greater odds of invasive breast cancer (OR, 1.20; 95% CI, 1.17 to 1.22; AUC, 0.63; 95% CI, 0.62 to 0.64) and was similarly predictive of interval (OR, 1.20; 95% CI, 1.13 to 1.27; AUC, 0.63) and advanced cancers (OR, 1.23; 95% CI, 1.16 to 1.31; AUC, 0.64) and in dense (OR, 1.18; 95% CI, 1.15 to 1.22; AUC, 0.66) breasts. AI score improved prediction of all cancer types in models with density measures (PLRT values < .001); discrimination improved for advanced cancer (ie, AUC for dense volume increased from 0.624 to 0.679, Δ AUC 0.065, P = .01) but did not reach statistical significance for interval cancer.AI imaging algorithms coupled with breast density independently contribute to long-term risk prediction of invasive breast cancers, in particular, advanced cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助饭团不吃鱼采纳,获得10
6秒前
量子星尘发布了新的文献求助10
14秒前
彭于晏应助世良采纳,获得10
15秒前
15秒前
20秒前
21秒前
GIA完成签到,获得积分10
23秒前
饭团不吃鱼完成签到,获得积分10
31秒前
ceeray23应助科研通管家采纳,获得10
38秒前
ceeray23应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
ceeray23应助科研通管家采纳,获得10
38秒前
39秒前
39秒前
炙热的雪糕完成签到,获得积分10
41秒前
gbb发布了新的文献求助10
43秒前
LXZ发布了新的文献求助10
46秒前
willlee完成签到 ,获得积分10
46秒前
47秒前
49秒前
脑洞疼应助哈皮波采纳,获得10
50秒前
世良发布了新的文献求助10
55秒前
55秒前
gbb完成签到,获得积分10
55秒前
体贴花卷发布了新的文献求助10
58秒前
ddddddd完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
哈皮波发布了新的文献求助10
1分钟前
暖暖完成签到,获得积分10
1分钟前
哈皮波完成签到,获得积分10
1分钟前
1分钟前
西安浴日光能赵炜完成签到,获得积分10
1分钟前
1分钟前
搜集达人应助体贴花卷采纳,获得10
1分钟前
1分钟前
科研通AI6应助xiaozhou采纳,获得10
1分钟前
Lifel完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399