Impact of Artificial Intelligence System and Volumetric Density on Risk Prediction of Interval, Screen-Detected, and Advanced Breast Cancer

医学 乳腺癌 乳腺摄影术 置信区间 优势比 癌症 逻辑回归 内科学 肿瘤科
作者
Celine M. Vachon,Christopher G. Scott,Aaron D. Norman,Sadia Khanani,Matthew R. Jensen,Carrie B. Hruska,Kathleen R. Brandt,Stacey J. Winham,Karla Kerlikowske
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:41 (17): 3172-3183 被引量:1
标识
DOI:10.1200/jco.22.01153
摘要

Artificial intelligence (AI) algorithms improve breast cancer detection on mammography, but their contribution to long-term risk prediction for advanced and interval cancers is unknown.We identified 2,412 women with invasive breast cancer and 4,995 controls matched on age, race, and date of mammogram, from two US mammography cohorts, who had two-dimensional full-field digital mammograms performed 2-5.5 years before cancer diagnosis. We assessed Breast Imaging Reporting and Data System density, an AI malignancy score (1-10), and volumetric density measures. We used conditional logistic regression to estimate odds ratios (ORs), 95% CIs, adjusted for age and BMI, and C-statistics (AUC) to describe the association of AI score with invasive cancer and its contribution to models with breast density measures. Likelihood ratio tests (LRTs) and bootstrapping methods were used to compare model performance.On mammograms between 2-5.5 years prior to cancer, a one unit increase in AI score was associated with 20% greater odds of invasive breast cancer (OR, 1.20; 95% CI, 1.17 to 1.22; AUC, 0.63; 95% CI, 0.62 to 0.64) and was similarly predictive of interval (OR, 1.20; 95% CI, 1.13 to 1.27; AUC, 0.63) and advanced cancers (OR, 1.23; 95% CI, 1.16 to 1.31; AUC, 0.64) and in dense (OR, 1.18; 95% CI, 1.15 to 1.22; AUC, 0.66) breasts. AI score improved prediction of all cancer types in models with density measures (PLRT values < .001); discrimination improved for advanced cancer (ie, AUC for dense volume increased from 0.624 to 0.679, Δ AUC 0.065, P = .01) but did not reach statistical significance for interval cancer.AI imaging algorithms coupled with breast density independently contribute to long-term risk prediction of invasive breast cancers, in particular, advanced cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
古古怪界丶黑大帅完成签到,获得积分10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
从容的小凡完成签到,获得积分10
1秒前
能干的玉兰完成签到,获得积分20
1秒前
天天快乐应助科研通管家采纳,获得30
1秒前
Sid完成签到,获得积分10
1秒前
李爱国应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
yuyu完成签到 ,获得积分20
2秒前
香蕉觅云应助科研通管家采纳,获得30
2秒前
kister应助科研通管家采纳,获得20
2秒前
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
3秒前
2569完成签到,获得积分10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
汉堡包应助RC_Wang采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
lu完成签到,获得积分10
3秒前
田様应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得30
3秒前
华仔应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得20
4秒前
所所应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261749
求助须知:如何正确求助?哪些是违规求助? 4422906
关于积分的说明 13767729
捐赠科研通 4297318
什么是DOI,文献DOI怎么找? 2357911
邀请新用户注册赠送积分活动 1354280
关于科研通互助平台的介绍 1315383