Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle

转录组 表观遗传学 生物 DNA甲基化 骨骼肌 生物信息学 遗传学 基因 基因表达 内分泌学
作者
Sarah Voisin,Kirsten Seale,Jacques Michaux,Shanie Landen,Nicholas R Harvey,Larisa M. Haupt,Lyn R. Griffiths,Kevin J. Ashton,Vernon G. Coffey,Jamie-Lee M Thompson,Thomas Doering,Maléne E. Lindholm,Colum P. Walsh,Gareth W. Davison,Rachelle E Irwin,Catherine McBride,Ola Hansson,Olof Asplund,Aino Heikkinen,Päivi Piirilä,Kirsi H. Pietiläinen,Miina Ollikainen,Sara Blocquiaux,Martine Thomis,Coletta K. Dawn,Adam P. Sharples,Nir Eynon
出处
期刊:Aging Cell [Wiley]
被引量:10
标识
DOI:10.1111/acel.13859
摘要

Abstract Exercise training prevents age‐related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late‐life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta‐analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples ( n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse “ages” the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age‐related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独行业完成签到,获得积分10
刚刚
1秒前
杨怂怂发布了新的文献求助10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
GGU应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
jiajie_qin应助科研通管家采纳,获得20
3秒前
3秒前
大个应助科研通管家采纳,获得10
3秒前
duanhuiyuan应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
duanhuiyuan应助科研通管家采纳,获得10
3秒前
3秒前
科目三应助科研通管家采纳,获得10
4秒前
duanhuiyuan应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
王珅君发布了新的文献求助10
4秒前
激动的南烟完成签到,获得积分10
5秒前
还好发布了新的文献求助10
6秒前
6秒前
8秒前
8秒前
11秒前
南风发布了新的文献求助10
13秒前
虚拟的萤完成签到,获得积分10
14秒前
还好完成签到,获得积分10
17秒前
17秒前
17秒前
淡然醉冬发布了新的文献求助10
18秒前
18秒前
所所应助nanfeng采纳,获得10
18秒前
在水一方应助学医小麻花采纳,获得10
19秒前
复杂访冬完成签到,获得积分10
20秒前
20秒前
22秒前
22秒前
无花果应助月棺轻城采纳,获得10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459305
求助须知:如何正确求助?哪些是违规求助? 3053795
关于积分的说明 9038595
捐赠科研通 2743133
什么是DOI,文献DOI怎么找? 1504672
科研通“疑难数据库(出版商)”最低求助积分说明 695354
邀请新用户注册赠送积分活动 694664