Examining the impact of varying levels of AI teammate influence on human-AI teams

感知 工作量 人力资源 计算机科学 知识管理 心理学 管理 操作系统 经济 神经科学
作者
Christopher Flathmann,Beau G. Schelble,Patrick J. Rosopa,Nathan J. McNeese,Rohit Mallick,Kapil Chalil Madathil
出处
期刊:International journal of human-computer studies [Elsevier BV]
卷期号:177: 103061-103061 被引量:26
标识
DOI:10.1016/j.ijhcs.2023.103061
摘要

The implementation of AI teammates is creating a wealth of research that examines how AI teammates impact human-AI teams. However, AI teammates themselves are not static, and their roles and responsibilities in human-AI teams are likely to change as technologies advance in the coming years. As a result of this advancement, AI teammates will gain influence in teams, which refers to their ability to change and manipulate a team's shared resources. This study uses a mixed-methods experiment to examine how the amount of influence AI teammates have on a team's shared resources can impact the team outcomes of human teammate performance, teammate perceptions, and whole-team perception. Results indicate that AI teammates that increase their influence on shared resources over time can stagnate the improvement of human performance, but AI teammates that decrease their influence on shared resources can actually encourage humans to improve their own performance. Additionally, AI teammates that are highly influential on shared resources can make humans perceive a greater cognitive workload. However, qualitative results indicate that these impacts on human performance and perception do not consistently impact the acceptance humans form for AI teammates. Rather, humans form acceptance for AI teammates if said AI use its influence to manipulate resources to benefit the personal goals of human teammates. These results have critical implications for human-AI teaming as it shows that the influence AI teammates have on shared resources can be designed in a way that improves human performance. However, future research is going to need to focus more critically on how the personal goals humans have, which may not align with a team's overall goals, are going to mediate the effectiveness of the AI teammate influence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AC赵先生完成签到,获得积分10
1秒前
1秒前
aom发布了新的文献求助10
2秒前
鲤鱼发布了新的文献求助10
2秒前
DrFoo完成签到,获得积分10
2秒前
科研小菜狗完成签到,获得积分10
2秒前
yam001发布了新的文献求助10
2秒前
劲秉应助邓少龙采纳,获得10
3秒前
哈哈完成签到,获得积分10
3秒前
清爽的真完成签到,获得积分10
4秒前
陈家小萝卜完成签到 ,获得积分10
4秒前
魔幻的醉柳完成签到,获得积分10
4秒前
上官若男应助xiaoxiaoliang采纳,获得10
4秒前
PhD-SCAU完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
李健应助Vyasa采纳,获得10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
王老裂完成签到,获得积分10
7秒前
les3完成签到,获得积分10
7秒前
yam001完成签到,获得积分20
8秒前
Julia完成签到,获得积分10
9秒前
9秒前
书是人类进步的阶梯完成签到 ,获得积分10
9秒前
10秒前
柠檬九分酸完成签到,获得积分10
10秒前
酷酷的如天完成签到,获得积分10
10秒前
11秒前
11秒前
MJQ发布了新的文献求助10
12秒前
渡年发布了新的文献求助10
13秒前
CyrusSo524应助精明的芷荷采纳,获得10
13秒前
早爹发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
xing发布了新的文献求助10
14秒前
baodingning完成签到,获得积分10
14秒前
旺仔牛奶糖i完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667111
求助须知:如何正确求助?哪些是违规求助? 3225880
关于积分的说明 9766049
捐赠科研通 2935726
什么是DOI,文献DOI怎么找? 1607899
邀请新用户注册赠送积分活动 759394
科研通“疑难数据库(出版商)”最低求助积分说明 735322