Predicting mechanical properties of newly generated two-dimensional materials with minimum uncertainty

计算机科学 集合(抽象数据类型) 生成语法 材料性能 人工智能 机器学习 材料科学 复合材料 程序设计语言
作者
Inhyo Lee,Joonchul Kim,Taehyun Park,Kyoungmin Min
出处
期刊:Materials today advances [Elsevier]
卷期号:18: 100374-100374 被引量:3
标识
DOI:10.1016/j.mtadv.2023.100374
摘要

Two-dimensional (2D) materials exhibit exceptional properties. Thus, many studies have been conducted to discover novel 2D materials with unique characteristics or to find new ways of utilizing existing 2D materials. However, the existing open databases of 2D materials are often inefficient for this purpose. In this study, a material discovery framework is developed to identify new 2D materials using a deep learning-based generative model. First, a previous 2D database is adopted as a training set to develop a machine learning-based surrogate model for predicting the mechanical properties. Next, 2D candidates are generated, and their structural validity is confirmed by employing a classification model and checking their similarities to existing 2D materials. The uncertainty in the predicted mechanical properties of the generated materials is measured and the actual values are verified using density functional theory calculations. A total of 360 structures are newly identified according to the exploration method and the mean absolute error is significantly reduced from 206.025 to 10.185 N/m. We believe that the developed framework is general and can be further modified to search for novel 2D materials satisfying target physicochemical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恬恬完成签到,获得积分10
刚刚
1秒前
22发布了新的文献求助10
1秒前
aacc956发布了新的文献求助10
1秒前
1秒前
谨慎涵柏完成签到,获得积分10
2秒前
快乐的如风完成签到,获得积分10
3秒前
4秒前
吃猫的鱼完成签到,获得积分10
4秒前
脑洞疼应助润润轩轩采纳,获得10
5秒前
刘文静完成签到,获得积分10
6秒前
Southluuu发布了新的文献求助10
6秒前
chenjyuu发布了新的文献求助10
6秒前
6秒前
粗暴的仙人掌完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
logic发布了新的文献求助10
7秒前
习习应助生动的雨竹采纳,获得10
7秒前
bo完成签到 ,获得积分10
7秒前
迟大猫应助啵乐乐采纳,获得10
8秒前
安雯完成签到 ,获得积分10
8秒前
HuLL完成签到,获得积分10
8秒前
Yolo完成签到 ,获得积分10
8秒前
难过的慕青完成签到,获得积分10
8秒前
10秒前
10秒前
10秒前
11秒前
无花果应助sunzhiyu233采纳,获得10
11秒前
韭黄完成签到,获得积分20
11秒前
12秒前
诚c发布了新的文献求助10
12秒前
自然秋柳完成签到 ,获得积分10
12秒前
我是老大应助经法采纳,获得10
12秒前
默默的皮牙子应助经法采纳,获得10
12秒前
orixero应助经法采纳,获得10
12秒前
小马甲应助经法采纳,获得10
12秒前
柚子成精应助经法采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759