Research on soil moisture content combination prediction model based on ARIMA and BP neural networks

自回归积分移动平均 人工神经网络 计算机科学 含水量 时间序列 人工智能 机器学习 工程类 岩土工程
作者
Guowei Wang,Yingxin Han,Jing Chang
出处
期刊:Advanced control for applications [Wiley]
卷期号:6 (2) 被引量:3
标识
DOI:10.1002/adc2.139
摘要

Abstract Predicting soil moisture accurately is the precondition of realizing accurate irrigation and improving the utilization rate of water resource and the necessary step of developing water‐saving agriculture, which can alleviate the water shortage in our agricultural effectively. In order to further improve the accuracy of soil water content prediction, a combined soil water content prediction model based on Autoregressive moving average model (ARIMA model) and back propagation neural network (BP neural network) neural network is proposed. The model considers the linear and nonlinear characteristics of soil water content data, combines them according to the characteristics of the model itself, gives full play to the advantages of ARIMA model and BP neural network. At the same time, two data smoothing methods were used to establish the ARIMA model, and the adaptive moment estimation algorithm (Adam algorithm) and mind evolutionary algorithm (MEA) optimization BP neural network model were used to propose an improved combined prediction model to predict soil water content data. The experimental results show that the average relative error of the improved combinatorial prediction model is 1.51%, which is 4.18%, 0.95% and 3.1% lower than the combinatorial prediction model, BP neural network model and ARIMA model, respectively, and the overall prediction effect is better, which can be used to save agricultural water and provide a strong basis for the development of water‐saving agriculture in China. At the same time, it can also ensure that crop production is increased and the purpose of national food security is guaranteed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
马里奥完成签到,获得积分10
1秒前
结实的半双完成签到 ,获得积分10
2秒前
彭于晏应助zwf123采纳,获得10
3秒前
深情安青应助zwf123采纳,获得10
3秒前
3秒前
橡皮鱼完成签到,获得积分10
4秒前
5秒前
yurenxiaojie发布了新的文献求助10
6秒前
ding应助科研通管家采纳,获得30
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得30
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
8秒前
一轮明月完成签到 ,获得积分10
8秒前
欢喜大地发布了新的文献求助10
8秒前
言叶发布了新的文献求助10
8秒前
顾星辞发布了新的文献求助10
10秒前
HCKACECE完成签到 ,获得积分10
10秒前
务实鞅完成签到 ,获得积分10
14秒前
14秒前
独特的忆彤完成签到 ,获得积分10
15秒前
15秒前
无辜的丹雪完成签到 ,获得积分10
16秒前
18秒前
19秒前
20秒前
20秒前
无语完成签到,获得积分10
21秒前
赘婿应助再睡会儿让我采纳,获得10
22秒前
屠龙少女完成签到,获得积分10
23秒前
24秒前
25秒前
华仔应助xin采纳,获得10
25秒前
虞无声应助顾星辞采纳,获得10
28秒前
宁为树完成签到,获得积分10
29秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391478
求助须知:如何正确求助?哪些是违规求助? 3002609
关于积分的说明 8804745
捐赠科研通 2689187
什么是DOI,文献DOI怎么找? 1472999
科研通“疑难数据库(出版商)”最低求助积分说明 681297
邀请新用户注册赠送积分活动 674184