材料科学
光催化
Atom(片上系统)
原子单位
催化作用
电子转移
纳米技术
吸附
化学物理
光化学
化学
物理化学
物理
生物化学
量子力学
计算机科学
嵌入式系统
作者
Han Li,Qinjun Song,Sijie Wan,Ching‐Wei Tung,Chengyuan Liu,Yang Pan,Guoqiang Luo,Hao Ming Chen,Shaowen Cao,Jiaguo Yu,Lianmeng Zhang
出处
期刊:Small
[Wiley]
日期:2023-04-24
卷期号:19 (34)
被引量:38
标识
DOI:10.1002/smll.202301711
摘要
Solar-driven CO2 conversion into valuable fuels is a promising strategy to alleviate the energy and environmental issues. However, inefficient charge separation and transfer greatly limits the photocatalytic CO2 reduction efficiency. Herein, single-atom Pt anchored on 3D hierarchical TiO2 -Ti3 C2 with atomic-scale interface engineering is successfully synthesized through an in situ transformation and photoreduction method. The in situ growth of TiO2 on Ti3 C2 nanosheets can not only provide interfacial driving force for the charge transport, but also create an atomic-level charge transfer channel for directional electron migration. Moreover, the single-atom Pt anchored on TiO2 or Ti3 C2 can effectively capture the photogenerated electrons through the atomic interfacial PtO bond with shortened charge migration distance, and simultaneously serve as active sites for CO2 adsorption and activation. Benefiting from the synergistic effect of the atomic interface engineering of single-atom Pt and interfacial TiOTi, the optimized photocatalyst exhibits excellent CO2 -to-CO conversion activity of 20.5 µmol g-1 h-1 with a selectivity of 96%, which is five times that of commercial TiO2 (P25). This work sheds new light on designing ideal atomic-scale interface and single-atom catalysts for efficient solar fuel conversation.
科研通智能强力驱动
Strongly Powered by AbleSci AI