Automatic motion artefact detection in brain T1-weighted magnetic resonance images from a clinical data warehouse using synthetic data

计算机科学 人工智能 计算机视觉 运动(物理) 磁共振成像 重影 医学影像学 利用 模式识别(心理学) 放射科 医学 计算机安全
作者
Sophie Loizillon,Simona Bottani,Aurélien Maire,Sébastian Ströer,Didier Dormont,Olivier Colliot,Ninon Burgos
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:93: 103073-103073 被引量:8
标识
DOI:10.1016/j.media.2023.103073
摘要

Containing the medical data of millions of patients, clinical data warehouses (CDWs) represent a great opportunity to develop computational tools. Magnetic resonance images (MRIs) are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are corrupted by these artefacts and may be unusable. Since their manual detection is impossible due to the large number of scans, it is necessary to develop tools to automatically exclude (or at least identify) images with motion in order to fully exploit CDWs. In this paper, we propose a novel transfer learning method from research to clinical data for the automatic detection of motion in 3D T1-weighted brain MRI. The method consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the labelling of 4045 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy>80 %). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and highlight the importance of a clinical validation of models trained on research data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助hwezhu采纳,获得10
1秒前
1秒前
1秒前
漂亮采波发布了新的文献求助10
2秒前
吃饭去不去完成签到,获得积分10
2秒前
3秒前
4秒前
gao完成签到,获得积分10
4秒前
彭于晏应助Zjx采纳,获得10
5秒前
5秒前
5秒前
丘比特应助moment采纳,获得10
7秒前
YO完成签到,获得积分20
8秒前
8秒前
孙军涛发布了新的文献求助10
10秒前
11秒前
Joao79完成签到,获得积分10
13秒前
meng若发布了新的文献求助10
14秒前
14秒前
小杜在此发布了新的文献求助10
15秒前
16秒前
yulong完成签到,获得积分10
17秒前
IR1S0110完成签到,获得积分20
18秒前
高是个科研狗完成签到 ,获得积分10
18秒前
18秒前
传奇3应助Dream采纳,获得10
18秒前
zmy完成签到,获得积分10
18秒前
SYLH应助无风海采纳,获得10
20秒前
领导范儿应助无风海采纳,获得10
20秒前
xinxinbaby发布了新的文献求助10
20秒前
传奇3应助神明采纳,获得10
20秒前
21秒前
星辰大海应助劳大采纳,获得10
21秒前
Orange应助Ohhruby采纳,获得10
22秒前
第一百零一个完成签到,获得积分10
22秒前
zyzhnu完成签到,获得积分10
22秒前
Leeu应助憨憨采纳,获得10
23秒前
冰凌心恋完成签到,获得积分10
23秒前
ysx_fish发布了新的文献求助150
24秒前
SSSShawn发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496