Automatic motion artefact detection in brain T1-weighted magnetic resonance images from a clinical data warehouse using synthetic data

计算机科学 人工智能 计算机视觉 运动(物理) 磁共振成像 重影 医学影像学 利用 模式识别(心理学) 放射科 医学 计算机安全
作者
Sophie Loizillon,Simona Bottani,Aurélien Maire,Sébastian Ströer,Didier Dormont,Olivier Colliot,Ninon Burgos
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:93: 103073-103073 被引量:4
标识
DOI:10.1016/j.media.2023.103073
摘要

Containing the medical data of millions of patients, clinical data warehouses (CDWs) represent a great opportunity to develop computational tools. Magnetic resonance images (MRIs) are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are corrupted by these artefacts and may be unusable. Since their manual detection is impossible due to the large number of scans, it is necessary to develop tools to automatically exclude (or at least identify) images with motion in order to fully exploit CDWs. In this paper, we propose a novel transfer learning method from research to clinical data for the automatic detection of motion in 3D T1-weighted brain MRI. The method consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the labelling of 4045 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy>80 %). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and highlight the importance of a clinical validation of models trained on research data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小霍霍发布了新的文献求助10
1秒前
2秒前
sissiarno应助cnkly采纳,获得100
2秒前
标致白卉发布了新的文献求助10
3秒前
搜集达人应助小困困朱采纳,获得10
3秒前
3秒前
沉静海安发布了新的文献求助10
4秒前
小土豆应助李y梅子采纳,获得30
5秒前
maying发布了新的文献求助10
6秒前
slzyycy完成签到,获得积分10
9秒前
9秒前
10秒前
艾七七完成签到,获得积分10
10秒前
10秒前
XLtx完成签到,获得积分10
11秒前
12秒前
13秒前
and999完成签到,获得积分10
13秒前
14秒前
14秒前
aceman发布了新的文献求助10
16秒前
BananaSlayer完成签到,获得积分10
16秒前
17秒前
wan发布了新的文献求助10
18秒前
欢城发布了新的文献求助10
19秒前
liu完成签到,获得积分10
20秒前
如约完成签到,获得积分10
20秒前
21秒前
21秒前
maying完成签到 ,获得积分10
22秒前
萧水白应助陈呱呱采纳,获得50
24秒前
Jasper应助过时的访梦采纳,获得10
24秒前
zhaozhao发布了新的文献求助10
24秒前
Lucas应助大娱乐家采纳,获得10
25秒前
shinysparrow应助完美的海秋采纳,获得150
26秒前
26秒前
猪猪女孩一路硕博完成签到,获得积分10
26秒前
维C橙子发布了新的文献求助10
27秒前
诚心的金毛完成签到,获得积分10
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238389
求助须知:如何正确求助?哪些是违规求助? 2883793
关于积分的说明 8231686
捐赠科研通 2551769
什么是DOI,文献DOI怎么找? 1380253
科研通“疑难数据库(出版商)”最低求助积分说明 648987
邀请新用户注册赠送积分活动 624619