Automatic motion artefact detection in brain T1-weighted magnetic resonance images from a clinical data warehouse using synthetic data

计算机科学 人工智能 计算机视觉 运动(物理) 磁共振成像 重影 医学影像学 利用 模式识别(心理学) 放射科 计算机安全 医学
作者
Sophie Loizillon,Simona Bottani,Aurélien Maire,Sébastian Ströer,Didier Dormont,Olivier Colliot,Ninon Burgos
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:93: 103073-103073 被引量:8
标识
DOI:10.1016/j.media.2023.103073
摘要

Containing the medical data of millions of patients, clinical data warehouses (CDWs) represent a great opportunity to develop computational tools. Magnetic resonance images (MRIs) are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are corrupted by these artefacts and may be unusable. Since their manual detection is impossible due to the large number of scans, it is necessary to develop tools to automatically exclude (or at least identify) images with motion in order to fully exploit CDWs. In this paper, we propose a novel transfer learning method from research to clinical data for the automatic detection of motion in 3D T1-weighted brain MRI. The method consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the labelling of 4045 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy>80 %). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and highlight the importance of a clinical validation of models trained on research data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
852应助橘子采纳,获得10
1秒前
2秒前
李健的粉丝团团长应助Lws采纳,获得10
2秒前
2秒前
SJJ完成签到,获得积分10
2秒前
2秒前
ming发布了新的文献求助10
3秒前
熊xiong发布了新的文献求助10
3秒前
ssss发布了新的文献求助10
3秒前
萬壹完成签到,获得积分10
3秒前
浅色墨水发布了新的文献求助10
4秒前
赘婿应助liang采纳,获得10
4秒前
顾矜应助年轻紫青采纳,获得10
5秒前
5秒前
Hello应助小鱼采纳,获得10
5秒前
fu发布了新的文献求助10
6秒前
zzz完成签到,获得积分10
7秒前
不配.应助进击的DOPA采纳,获得50
7秒前
7秒前
8秒前
科研通AI6应助shinyar采纳,获得10
8秒前
慕青应助大意的飞莲采纳,获得10
8秒前
9秒前
ky完成签到,获得积分10
9秒前
辛勤凌旋发布了新的文献求助10
9秒前
10秒前
优秀远侵完成签到,获得积分10
10秒前
11秒前
zhuan发布了新的文献求助10
11秒前
复杂的棒球完成签到,获得积分10
11秒前
CipherSage应助乐茵采纳,获得10
12秒前
12秒前
专注的玉米完成签到,获得积分10
12秒前
小二郎应助犀牛采纳,获得10
12秒前
充电宝应助Cccrik采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
桐桐应助小X采纳,获得10
13秒前
13秒前
YingSuhui关注了科研通微信公众号
14秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238818
求助须知:如何正确求助?哪些是违规求助? 4406474
关于积分的说明 13714044
捐赠科研通 4274861
什么是DOI,文献DOI怎么找? 2345780
邀请新用户注册赠送积分活动 1342825
关于科研通互助平台的介绍 1300786