光电流
材料科学
催化作用
析氧
分解水
化学工程
无定形固体
氧化还原
氧气
电解质
原位
纳米技术
电极
化学
电化学
物理化学
光电子学
光催化
冶金
有机化学
工程类
生物化学
作者
Mayur A. Gaikwad,Uma V. Ghorpade,Umesh P. Suryawanshi,Priyank V. Kumar,Suyoung Jang,Jun Sung Jang,Lan Tran,Jong‐Sook Lee,Hyojung Bae,Seung Wook Shin,Mahesh P. Suryawanshi,Jin Hyeok Kim
标识
DOI:10.1021/acsami.3c01877
摘要
The coupling of oxygen evolution reaction (OER) catalysts with photoanodes is a promising strategy for enhancing the photoelectrochemical (PEC) performance by passivating photoanode's surface defect states and facilitating charge transfer at the photoanode/electrolyte interface. However, a serious interface recombination issue caused by poor interface and OER catalysts coating quality often limits further performance improvement of photoanodes. Herein, a rapid Fenton-like reaction method is demonstrated to produce ultrathin amorphous Ni:FeOOH catalysts with in situ-induced oxygen vacancies (Vo) to improve the water oxidation activity and stability of BiVO4 photoanodes. The combined physical characterizations, PEC studies, and density functional theory calculations revealed that the reductive environment in a Fenton-like reaction in situ produces abundant Vo in Ni:FeOOH catalysts, which significantly improves charge separation and charge transfer efficiency of BiVO4 while also offering abundant active sites and a reduced energy barrier for OER. As a result, Ni:FeOOH-Vo catalysts yielded a more than 2-fold increased photocurrent density in the BiVO4 photoanode (from 1.54 to 4.15 mA cm-2 at 1.23 VRHE), accompanied by high stability for 5 h. This work not only highlights the significance of abundant Vo in catalysts but also provides new insights into the rational design and fabrication of efficient and stable solar water-splitting systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI