亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced deep residual network for bone classification and abnormality detection

异常 过度拟合 人工智能 卷积神经网络 医学诊断 异常检测 接收机工作特性 假阳性悖论 模式识别(心理学) 卡帕 计算机科学 医学 放射科 人工神经网络 数学 机器学习 精神科 几何学
作者
Jun Yao,Zhilin Guo,Wei Yu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (11): 6914-6929 被引量:4
标识
DOI:10.1002/mp.15966
摘要

A two-stage deep learning framework for bone classification and abnormality detection is proposed based on X-rays. The primary focus is on improving the speed of orthopedic disease diagnosis and helping physicians reduce the probability of false diagnoses.The method is based on two stages. In the first stage, one classifier with ResNeXt50 as the backbone is used to classify bones to eliminate the effect of bone type differences on abnormality detection. In the second stage, seven anomaly detectors are trained based on each type of training data. The seven detectors tested the seven results of the first stage, respectively. Pretrained models, data augmentation, focal loss, label smoothing loss, LR-attenuation and early stopping are used to improve performance and reduce the risk of overfitting.Experiments are based on the largest dataset for bone abnormality detection, MURA. In the first stage for bone classification, we got an accuracy of 96.69%, a sensitivity of 96.69%, a specificity of 99.46%, and an F1 score of 96.42%. In the second stage for abnormality detection, we got an accuracy of 84.15%, a sensitivity of 84.15%, a specificity of 87.50%, an F1 score of 84.10%, a Cohen's Kappa of 0.72, and an area under the ROC curve (AUC) score of 0.90.Compared with other excellent convolutional neural network models, the framework's effectiveness was verified with better accuracy, sensitivity, specificity, F1 score, Cohen's Kappa score, and AUC score for bone classification and abnormality detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
gxx发布了新的文献求助10
3秒前
惠须一饮三杯杯完成签到,获得积分10
5秒前
冷静的振家完成签到,获得积分10
5秒前
7秒前
8秒前
13秒前
14秒前
wsj发布了新的文献求助10
17秒前
Ava应助骨科小李采纳,获得10
18秒前
19秒前
浪里白条发布了新的文献求助10
20秒前
别看了发布了新的文献求助10
23秒前
斯文败类应助wsj采纳,获得10
25秒前
小蘑菇应助gxx采纳,获得10
31秒前
哲别发布了新的文献求助10
41秒前
Hello应助浪里白条采纳,获得10
45秒前
freshfire完成签到,获得积分20
45秒前
HtheJ完成签到,获得积分10
45秒前
dimples完成签到 ,获得积分10
56秒前
英俊的铭应助Re采纳,获得10
58秒前
1分钟前
1分钟前
1分钟前
小蘑菇应助小废物采纳,获得20
1分钟前
骨科小李发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Re发布了新的文献求助10
1分钟前
杨江华完成签到,获得积分10
1分钟前
科研大王完成签到,获得积分10
1分钟前
明亮的老四完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
小废物发布了新的文献求助20
2分钟前
nazhang发布了新的文献求助10
2分钟前
浪里白条发布了新的文献求助10
2分钟前
香蕉觅云应助nazhang采纳,获得10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644576
求助须知:如何正确求助?哪些是违规求助? 4764521
关于积分的说明 15025286
捐赠科研通 4802940
什么是DOI,文献DOI怎么找? 2567735
邀请新用户注册赠送积分活动 1525391
关于科研通互助平台的介绍 1484876