已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhanced deep residual network for bone classification and abnormality detection

异常 过度拟合 人工智能 卷积神经网络 医学诊断 异常检测 接收机工作特性 假阳性悖论 模式识别(心理学) 卡帕 计算机科学 医学 放射科 人工神经网络 数学 机器学习 精神科 几何学
作者
Jun Yao,Zhilin Guo,Wei Yu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (11): 6914-6929 被引量:4
标识
DOI:10.1002/mp.15966
摘要

A two-stage deep learning framework for bone classification and abnormality detection is proposed based on X-rays. The primary focus is on improving the speed of orthopedic disease diagnosis and helping physicians reduce the probability of false diagnoses.The method is based on two stages. In the first stage, one classifier with ResNeXt50 as the backbone is used to classify bones to eliminate the effect of bone type differences on abnormality detection. In the second stage, seven anomaly detectors are trained based on each type of training data. The seven detectors tested the seven results of the first stage, respectively. Pretrained models, data augmentation, focal loss, label smoothing loss, LR-attenuation and early stopping are used to improve performance and reduce the risk of overfitting.Experiments are based on the largest dataset for bone abnormality detection, MURA. In the first stage for bone classification, we got an accuracy of 96.69%, a sensitivity of 96.69%, a specificity of 99.46%, and an F1 score of 96.42%. In the second stage for abnormality detection, we got an accuracy of 84.15%, a sensitivity of 84.15%, a specificity of 87.50%, an F1 score of 84.10%, a Cohen's Kappa of 0.72, and an area under the ROC curve (AUC) score of 0.90.Compared with other excellent convolutional neural network models, the framework's effectiveness was verified with better accuracy, sensitivity, specificity, F1 score, Cohen's Kappa score, and AUC score for bone classification and abnormality detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不懈奋进应助LO7pM2采纳,获得30
1秒前
2秒前
蛋挞完成签到 ,获得积分10
2秒前
向阳完成签到,获得积分10
2秒前
455完成签到,获得积分10
3秒前
向阳发布了新的文献求助10
6秒前
Akim应助柚子采纳,获得10
7秒前
大模型应助PAPA采纳,获得10
8秒前
9秒前
Hello应助科研通管家采纳,获得10
10秒前
Hilda007应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
YifanWang应助科研通管家采纳,获得10
10秒前
Hilda007应助科研通管家采纳,获得10
10秒前
CCCheny应助科研通管家采纳,获得10
10秒前
YifanWang应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
11秒前
CCCheny应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
11秒前
隐形曼青应助科研通管家采纳,获得100
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得100
11秒前
Hello应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
SciGPT应助科研通管家采纳,获得30
11秒前
SciGPT应助科研通管家采纳,获得30
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Owen应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938