Maternal predictors of children's mental health in low‐income families: A structural equation model

心理健康 认知 心理学 结构方程建模 流行病学研究中心抑郁量表 萧条(经济学) 临床心理学 发展心理学 精神科 抑郁症状 数学 统计 宏观经济学 经济
作者
Boram Kwon,I. Lee,Gyungjoo Lee
出处
期刊:International Journal of Mental Health Nursing [Wiley]
卷期号:32 (1): 162-171 被引量:2
标识
DOI:10.1111/inm.13071
摘要

Low-income populations are particularly susceptible to mental health problems, and the susceptibilities of family members may be interconnected. In particular, maternal factors are known to be linked to their children's outcomes. This study aims to investigate how maternal cognition, depression, and the mother-child relationship, as well as children's cognition, predict the mental health of children in low-income families. Pairs of mothers and children from families receiving governmental assistance were surveyed between January 2018 and March 2019. Korean versions of the following instruments were used: Strengths and Difficulties Questionnaire (children's mental health problems), Cognitive Triad Inventory for Children (children's cognition), Kerns' Security Scale (mother-child relationship), Center for Epidemiologic Studies Depression Scale (maternal depression), and Automatic Thoughts Questionnaire-Negative (maternal cognition). A structural equation model was used to examine how maternal cognition, depression, the mother-child relationship, and children's cognition predict children's mental health. Maternal negative cognition and depression mediated by the children's relationships with their mothers negatively predicted their cognition and mental health problems. Enhancing maternal mental health and a mother-child relationship can help improve positive cognition and mental health of children from low-income families.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllllsy完成签到 ,获得积分10
1秒前
炸毛完成签到,获得积分10
1秒前
健忘英姑应助Choi采纳,获得20
4秒前
李爱国应助acuter采纳,获得10
5秒前
领导范儿应助JD.采纳,获得10
6秒前
晶晶完成签到,获得积分10
9秒前
11秒前
未见山完成签到,获得积分10
13秒前
打打应助ZXL采纳,获得10
14秒前
炸毛关注了科研通微信公众号
14秒前
钇铯发布了新的文献求助10
15秒前
123456完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
17秒前
奶油橘子发布了新的文献求助10
18秒前
20秒前
大红先生发布了新的文献求助20
20秒前
dada发布了新的文献求助10
21秒前
Miller应助felix采纳,获得10
22秒前
JD.发布了新的文献求助10
23秒前
丑八怪发布了新的文献求助10
23秒前
被划分发布了新的文献求助10
24秒前
24秒前
24秒前
kento应助科研通管家采纳,获得150
24秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
子车茗应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
Noel应助科研通管家采纳,获得50
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
ding应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得50
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
JamesPei应助科研通管家采纳,获得50
25秒前
情怀应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
聪明的破茧完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919