DIC-Net: Upgrade the performance of traditional DIC with Hermite dataset and convolution neural network

卷积(计算机科学) 数字图像相关 计算机科学 人工神经网络 变形(气象学) 深度学习 试验装置 流离失所(心理学) 边界(拓扑) 斑点图案 算法 人工智能 地质学 数学 光学 数学分析 心理学 海洋学 物理 心理治疗师
作者
Yin Wang,Jiaqing Zhao
出处
期刊:Optics and Lasers in Engineering [Elsevier BV]
卷期号:160: 107278-107278 被引量:32
标识
DOI:10.1016/j.optlaseng.2022.107278
摘要

Digital image correlation (DIC) is a non-contact optical method that tracks the speckle pattern on specimen surface to calculate the displacement and strain by image correlation algorithm. Although the traditional DIC method can conveniently measure surface deformation, it still has many limitations: (1) the accuracy of displacement and strain calculation needs to be improved in the case of high deformation gradient; (2) under match or over-match can hardly be avoided when the filters are used to reconstruct smooth displacement or strain field, and (3) boundary effect remains unresolved in computing the deformation near the boundary of region of interest or the discontinuous area (e.g. area near crack tip or crack face). Recently, the deep learning based DIC (Deep-DIC) has revealed its attractive ability in handling above issues in traditional DIC, and impressive results have been achieved. The mean value of the absolute error (MAE) on the test set has been optimized to 0.0361 pixels using existing Deep-DIC approaches, which are accompanied by a real-time measurement speed. The network structure and training dataset are two key factors for the deep learning method. However, the current working networks have been modified from other image tasks and cannot fully adapt to the demands of the DIC tasks, and the dataset they generated still has evident flaws, limiting the method's accuracy and generalization performance which is utilized to assess performance on samples outside the training set. In this paper, we firstly proposed a new Hermite dataset that is created by using the high-order Hermite element to take account more complex deformation, then a new network architecture designed for the DIC task has been developed to extract richer deformation features. A test set of 3216 examples containing six different modes of displacement is used to compare the performance of our network with others. The proposed DIC-Net-d achieves the lowest MAE in the test set. Meanwhile, in the Star5 image sets from DIC-Challenge, the proposed DIC-Net-d achieves a spatial resolution of 17.25 pixels and a noise level of 0.0136 which outperforms existing traditional and non-traditional methods. Finally, the strain network trained by our Hermite dataset is also successful in predicting the strain field of Star6 in the DIC challenge. The experiment results show the superiority of the proposed Hermite dataset and new network with respect to other Deep-DIC methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
崔博发布了新的文献求助10
2秒前
麒葩!发布了新的文献求助10
2秒前
Akim应助自觉葶采纳,获得10
2秒前
2秒前
3秒前
3秒前
富贵儿完成签到,获得积分10
3秒前
智勇双全完成签到,获得积分10
4秒前
4秒前
归尘发布了新的文献求助10
5秒前
大个应助迷你的白易采纳,获得10
5秒前
5秒前
FashionBoy应助嗯嗯采纳,获得10
5秒前
xuzj应助研友_楼灵煌采纳,获得20
6秒前
8秒前
erhan7发布了新的文献求助10
8秒前
梅花发布了新的文献求助20
9秒前
9秒前
搜集达人应助娃哈哈采纳,获得10
9秒前
pharmq发布了新的文献求助10
9秒前
9秒前
我行我素发布了新的文献求助10
9秒前
YuxiLuo完成签到,获得积分10
9秒前
杨晓毅完成签到,获得积分10
9秒前
9秒前
10秒前
yuu完成签到,获得积分10
11秒前
bonongni发布了新的文献求助10
12秒前
轩1完成签到,获得积分20
13秒前
汉堡包应助JoshuaChen采纳,获得10
13秒前
lc完成签到,获得积分10
14秒前
zy发布了新的文献求助10
14秒前
丘比特应助明明采纳,获得10
14秒前
xiiin完成签到,获得积分10
15秒前
温婉的老五完成签到,获得积分20
15秒前
15秒前
李爱国应助殷勤的雨灵采纳,获得10
16秒前
徒然草完成签到,获得积分10
16秒前
abd发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620