已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DIC-Net: Upgrade the performance of traditional DIC with Hermite dataset and convolution neural network

卷积(计算机科学) 数字图像相关 计算机科学 人工神经网络 变形(气象学) 深度学习 试验装置 流离失所(心理学) 边界(拓扑) 斑点图案 算法 人工智能 地质学 数学 光学 数学分析 心理治疗师 海洋学 物理 心理学
作者
Yin Wang,Jiaqing Zhao
出处
期刊:Optics and Lasers in Engineering [Elsevier BV]
卷期号:160: 107278-107278 被引量:32
标识
DOI:10.1016/j.optlaseng.2022.107278
摘要

Digital image correlation (DIC) is a non-contact optical method that tracks the speckle pattern on specimen surface to calculate the displacement and strain by image correlation algorithm. Although the traditional DIC method can conveniently measure surface deformation, it still has many limitations: (1) the accuracy of displacement and strain calculation needs to be improved in the case of high deformation gradient; (2) under match or over-match can hardly be avoided when the filters are used to reconstruct smooth displacement or strain field, and (3) boundary effect remains unresolved in computing the deformation near the boundary of region of interest or the discontinuous area (e.g. area near crack tip or crack face). Recently, the deep learning based DIC (Deep-DIC) has revealed its attractive ability in handling above issues in traditional DIC, and impressive results have been achieved. The mean value of the absolute error (MAE) on the test set has been optimized to 0.0361 pixels using existing Deep-DIC approaches, which are accompanied by a real-time measurement speed. The network structure and training dataset are two key factors for the deep learning method. However, the current working networks have been modified from other image tasks and cannot fully adapt to the demands of the DIC tasks, and the dataset they generated still has evident flaws, limiting the method's accuracy and generalization performance which is utilized to assess performance on samples outside the training set. In this paper, we firstly proposed a new Hermite dataset that is created by using the high-order Hermite element to take account more complex deformation, then a new network architecture designed for the DIC task has been developed to extract richer deformation features. A test set of 3216 examples containing six different modes of displacement is used to compare the performance of our network with others. The proposed DIC-Net-d achieves the lowest MAE in the test set. Meanwhile, in the Star5 image sets from DIC-Challenge, the proposed DIC-Net-d achieves a spatial resolution of 17.25 pixels and a noise level of 0.0136 which outperforms existing traditional and non-traditional methods. Finally, the strain network trained by our Hermite dataset is also successful in predicting the strain field of Star6 in the DIC challenge. The experiment results show the superiority of the proposed Hermite dataset and new network with respect to other Deep-DIC methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
li完成签到,获得积分10
刚刚
想飞的小猴子完成签到,获得积分10
1秒前
yziy发布了新的文献求助10
1秒前
嘿嘿呼完成签到,获得积分20
3秒前
今后应助陆旻采纳,获得10
3秒前
3秒前
ww完成签到,获得积分20
4秒前
theo完成签到,获得积分10
5秒前
小小鹅发布了新的文献求助10
5秒前
movoandy发布了新的文献求助10
5秒前
科研通AI6应助wt采纳,获得10
6秒前
7秒前
燕尔蓝发布了新的文献求助10
7秒前
7秒前
渔渔完成签到 ,获得积分10
8秒前
9秒前
嘛吉发布了新的文献求助10
11秒前
活泼的若血完成签到 ,获得积分10
13秒前
学术小白w完成签到,获得积分10
14秒前
tangtang关注了科研通微信公众号
14秒前
15秒前
科研通AI6应助凶狠的源智采纳,获得10
16秒前
18秒前
传奇3应助hygge采纳,获得10
20秒前
20秒前
21秒前
21秒前
caoyonggang发布了新的文献求助10
22秒前
馆长给开心的访卉的求助进行了留言
22秒前
puppy发布了新的文献求助10
24秒前
科研通AI6应助嘛吉采纳,获得10
26秒前
26秒前
科研通AI6应助优雅的帅哥采纳,获得10
26秒前
小小牛马完成签到 ,获得积分10
28秒前
28秒前
29秒前
陈小白完成签到,获得积分10
29秒前
30秒前
ltttaaaa发布了新的文献求助10
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522