DIC-Net: Upgrade the performance of traditional DIC with Hermite dataset and convolution neural network

卷积(计算机科学) 数字图像相关 计算机科学 人工神经网络 变形(气象学) 深度学习 试验装置 流离失所(心理学) 边界(拓扑) 斑点图案 算法 人工智能 地质学 数学 光学 数学分析 心理治疗师 海洋学 物理 心理学
作者
Yin Wang,Jiaqing Zhao
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:160: 107278-107278 被引量:32
标识
DOI:10.1016/j.optlaseng.2022.107278
摘要

Digital image correlation (DIC) is a non-contact optical method that tracks the speckle pattern on specimen surface to calculate the displacement and strain by image correlation algorithm. Although the traditional DIC method can conveniently measure surface deformation, it still has many limitations: (1) the accuracy of displacement and strain calculation needs to be improved in the case of high deformation gradient; (2) under match or over-match can hardly be avoided when the filters are used to reconstruct smooth displacement or strain field, and (3) boundary effect remains unresolved in computing the deformation near the boundary of region of interest or the discontinuous area (e.g. area near crack tip or crack face). Recently, the deep learning based DIC (Deep-DIC) has revealed its attractive ability in handling above issues in traditional DIC, and impressive results have been achieved. The mean value of the absolute error (MAE) on the test set has been optimized to 0.0361 pixels using existing Deep-DIC approaches, which are accompanied by a real-time measurement speed. The network structure and training dataset are two key factors for the deep learning method. However, the current working networks have been modified from other image tasks and cannot fully adapt to the demands of the DIC tasks, and the dataset they generated still has evident flaws, limiting the method's accuracy and generalization performance which is utilized to assess performance on samples outside the training set. In this paper, we firstly proposed a new Hermite dataset that is created by using the high-order Hermite element to take account more complex deformation, then a new network architecture designed for the DIC task has been developed to extract richer deformation features. A test set of 3216 examples containing six different modes of displacement is used to compare the performance of our network with others. The proposed DIC-Net-d achieves the lowest MAE in the test set. Meanwhile, in the Star5 image sets from DIC-Challenge, the proposed DIC-Net-d achieves a spatial resolution of 17.25 pixels and a noise level of 0.0136 which outperforms existing traditional and non-traditional methods. Finally, the strain network trained by our Hermite dataset is also successful in predicting the strain field of Star6 in the DIC challenge. The experiment results show the superiority of the proposed Hermite dataset and new network with respect to other Deep-DIC methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助nnnnnnxh采纳,获得10
1秒前
我心飞翔完成签到 ,获得积分10
1秒前
Cml完成签到,获得积分10
1秒前
明芬发布了新的文献求助10
1秒前
大脚仙发布了新的文献求助10
2秒前
哈基米德举报酷酷的盼海求助涉嫌违规
2秒前
3秒前
llzz完成签到,获得积分10
3秒前
科研通AI6应助ZsJJkk采纳,获得20
3秒前
styrene应助mfcare采纳,获得10
4秒前
打打应助安琪采纳,获得30
4秒前
田様应助陶醉鞅采纳,获得10
4秒前
隐形曼青应助Xiao采纳,获得10
5秒前
6秒前
不吃晚饭完成签到,获得积分10
6秒前
缓慢手机完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
领导范儿应助莽哥采纳,获得10
7秒前
哎哟我去完成签到,获得积分10
7秒前
自觉博超完成签到,获得积分10
7秒前
爆米花应助香蕉雅香采纳,获得10
8秒前
9秒前
YeY关注了科研通微信公众号
9秒前
suga'完成签到 ,获得积分10
10秒前
awu完成签到 ,获得积分10
10秒前
lyn应助automan采纳,获得10
10秒前
11秒前
11秒前
cc发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
花花123发布了新的文献求助10
13秒前
NexusExplorer应助程洁素采纳,获得10
13秒前
科研通AI6应助年轻迪奥采纳,获得10
14秒前
Healer完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406