DIC-Net: Upgrade the performance of traditional DIC with Hermite dataset and convolution neural network

卷积(计算机科学) 数字图像相关 计算机科学 人工神经网络 变形(气象学) 深度学习 试验装置 流离失所(心理学) 边界(拓扑) 斑点图案 算法 人工智能 地质学 数学 光学 数学分析 心理学 海洋学 物理 心理治疗师
作者
Yin Wang,Jiaqing Zhao
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:160: 107278-107278 被引量:12
标识
DOI:10.1016/j.optlaseng.2022.107278
摘要

Digital image correlation (DIC) is a non-contact optical method that tracks the speckle pattern on specimen surface to calculate the displacement and strain by image correlation algorithm. Although the traditional DIC method can conveniently measure surface deformation, it still has many limitations: (1) the accuracy of displacement and strain calculation needs to be improved in the case of high deformation gradient; (2) under match or over-match can hardly be avoided when the filters are used to reconstruct smooth displacement or strain field, and (3) boundary effect remains unresolved in computing the deformation near the boundary of region of interest or the discontinuous area (e.g. area near crack tip or crack face). Recently, the deep learning based DIC (Deep-DIC) has revealed its attractive ability in handling above issues in traditional DIC, and impressive results have been achieved. The mean value of the absolute error (MAE) on the test set has been optimized to 0.0361 pixels using existing Deep-DIC approaches, which are accompanied by a real-time measurement speed. The network structure and training dataset are two key factors for the deep learning method. However, the current working networks have been modified from other image tasks and cannot fully adapt to the demands of the DIC tasks, and the dataset they generated still has evident flaws, limiting the method's accuracy and generalization performance which is utilized to assess performance on samples outside the training set. In this paper, we firstly proposed a new Hermite dataset that is created by using the high-order Hermite element to take account more complex deformation, then a new network architecture designed for the DIC task has been developed to extract richer deformation features. A test set of 3216 examples containing six different modes of displacement is used to compare the performance of our network with others. The proposed DIC-Net-d achieves the lowest MAE in the test set. Meanwhile, in the Star5 image sets from DIC-Challenge, the proposed DIC-Net-d achieves a spatial resolution of 17.25 pixels and a noise level of 0.0136 which outperforms existing traditional and non-traditional methods. Finally, the strain network trained by our Hermite dataset is also successful in predicting the strain field of Star6 in the DIC challenge. The experiment results show the superiority of the proposed Hermite dataset and new network with respect to other Deep-DIC methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiang完成签到,获得积分10
1秒前
球闪发布了新的文献求助10
1秒前
努巴完成签到,获得积分10
1秒前
小二郎应助朱朱朱采纳,获得10
2秒前
房明建发布了新的文献求助10
2秒前
2秒前
hl应助不安的未来采纳,获得10
3秒前
4秒前
4秒前
hang发布了新的文献求助10
5秒前
情怀应助zhy采纳,获得10
6秒前
dawn发布了新的文献求助10
6秒前
划船用桨发布了新的文献求助10
6秒前
void科学家发布了新的文献求助10
7秒前
hl应助高震博采纳,获得10
9秒前
9秒前
脑洞疼应助bastien采纳,获得10
10秒前
Shi发布了新的文献求助10
10秒前
Miss蔡完成签到,获得积分10
10秒前
海狗发布了新的文献求助10
11秒前
12秒前
demom完成签到,获得积分10
12秒前
dannnnn完成签到,获得积分10
13秒前
小刘发布了新的文献求助10
13秒前
科目三应助研玲采纳,获得10
13秒前
hang完成签到,获得积分10
13秒前
bkagyin应助void科学家采纳,获得10
14秒前
小犁牛完成签到 ,获得积分10
14秒前
14秒前
11完成签到 ,获得积分10
15秒前
隐形世立发布了新的文献求助30
15秒前
许润培发布了新的文献求助10
16秒前
dannnnn发布了新的文献求助30
16秒前
16秒前
周女士发布了新的文献求助10
17秒前
17秒前
所所应助杰尼龟采纳,获得10
17秒前
17秒前
18秒前
18秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170704
求助须知:如何正确求助?哪些是违规求助? 2821739
关于积分的说明 7936289
捐赠科研通 2482180
什么是DOI,文献DOI怎么找? 1322371
科研通“疑难数据库(出版商)”最低求助积分说明 633620
版权声明 602608