Efficient CO2 reduction to reveal the piezocatalytic mechanism: From displacement current to active sites

压电 纳米发生器 流离失所(心理学) 材料科学 工作(物理) 还原(数学) 振动 机制(生物学) 能量收集 电子 电流(流体) 纳米技术 光电子学 能量(信号处理) 声学 物理 复合材料 热力学 心理学 数学 几何学 量子力学 心理治疗师
作者
Zhuoran Ren,Fang Chen,Qin Zhao,Guoqiang Zhao,Hui Li,Wenping Sun,Hongwei Huang,Tianyi Ma
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:320: 122007-122007 被引量:58
标识
DOI:10.1016/j.apcatb.2022.122007
摘要

Piezocatalysis has attracted the increasing interest of researchers as a novel catalytic method. To date, there are two popular mechanisms regarding the piezocatalysis, i.e., the piezoelectric effect and the energy band theory. However, both mechanisms cannot fully explain the piezocatalytic process: the electrons generated by the piezoelectric effect will not spontaneously participate in the piezocatalysis, while not all piezoelectric materials have an appropriate energy band structure. In this work, displacement current and the principle of piezoelectric nanogenerator are introduced to fully comprehend the piezocatalytic mechanism for the first time. As a proof-of-concept catalytic system, we synthesize [email protected]3 piezocatalyst for the CO2 reduction reaction (CO2RR) under ultrasonic vibration. A promising piezocatalytic CO2 reduction rate of 261.8 mol g−1h−1 is achieved with a high CO selectivity up to 93.8% under 50 kHz ultrasonic vibration. The CO yields of this catalytic system outperform most of the reported photocatalytic CO2RR and piezocatalytic CO2RR. Moreover, a comprehensive piezocatalytic mechanism from displacement current to active sites is proposed and supported by combining [email protected]3 piezoelectric nanogenerator, COMSOL simulation and energy band structure analysis. Under the ultrasonic vibration, the electrons generated by the piezoelectric effect are driven by the time-varying electrostatic potential formed by the displacement current. The suitable band structure of piezoelectric provider that satisfies the potential of reaction promotes electrons to participate in CO2RR on active sites. Overall, our work provides an insightful understanding of piezocatalysis and paves a new path for its development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小天应助善良的路灯采纳,获得30
刚刚
刚刚
脑洞疼应助yigu采纳,获得10
1秒前
1秒前
Hu完成签到 ,获得积分10
3秒前
liuyan432完成签到,获得积分10
3秒前
cc完成签到,获得积分10
3秒前
易烊千玺完成签到,获得积分20
3秒前
哒哒哒哒完成签到,获得积分10
3秒前
4秒前
李健应助陶醉觅夏采纳,获得10
5秒前
5秒前
独特凡松完成签到,获得积分10
5秒前
木笔朱瑾完成签到 ,获得积分10
6秒前
Rinohalt完成签到,获得积分10
6秒前
7秒前
孙梁子完成签到,获得积分10
7秒前
核桃花生奶兔完成签到 ,获得积分10
8秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
9秒前
10秒前
孙奕发布了新的文献求助10
10秒前
xiaotian_fan完成签到,获得积分10
10秒前
12秒前
12秒前
科研通AI2S应助laochen采纳,获得10
12秒前
盘尼西林发布了新的文献求助10
12秒前
迟大猫应助专心搞学术采纳,获得10
13秒前
15秒前
孙奕完成签到,获得积分10
16秒前
16秒前
俟天晴完成签到,获得积分10
16秒前
淡定问芙发布了新的文献求助30
17秒前
19秒前
Lewis完成签到,获得积分10
20秒前
orixero应助TranYan采纳,获得10
20秒前
猪猪hero发布了新的文献求助10
22秒前
23秒前
今后应助333采纳,获得10
24秒前
pu发布了新的文献求助10
25秒前
Akim应助梓榆采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794