Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion

机制(生物学) 特征(语言学) 杂草 人工智能 融合 传感器融合 模式识别(心理学) 计算机科学 计算机视觉 物理 生物 植物 哲学 语言学 量子力学
作者
Jiqing Chen,Huabin Wang,Hongdu Zhang,Tian Luo,Wei Depeng,Teng Long,Zhikui Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:202: 107412-107412 被引量:91
标识
DOI:10.1016/j.compag.2022.107412
摘要

• A detection model of sesame and weeds based on YOLOv4, YOLO-sesame, is proposed. • Using local importance pooling to add attention mechanism to SPP structure. • Use SE block to improve the logic module of local importance pooling. • The ASFF structure is integrated to solve the problem of missing detection. • Effectively improve the detection accuracy while maintaining a fast detection speed. Weeds have a significant impact on sesame throughout its early stages of development, thus they must be rigorously controlled. However, the shape of sesame seedlings and weeds are similar, and the size specifications are not defined, making reliable weed detection difficult. To achieve the goal of weed recognition, the majority of solutions now use a deep learning model to learn the weed image. Weed targets with big variances in size and specification are easy to overlook with the current deep learning algorithm. As a result, standard deep learning models have room for improvement when it comes to sesame and weed recognition rates. The YOLO-sesame model is proposed to improve the efficiency and accuracy of sesame weed identification. Based on the YOLOv4 model, an attention mechanism is introduced. Local importance pooling is added to the SPP layer, on which the SE module is used as a logical module. To address the issue of large differences in target size and specifications, an adaptive spatial feature fusion structure is included at the feature fusion level. The experimental results suggest that the YOLO-sesame model proposed in this study outperforms mainstream models such as Fast R-CNN, SSD, YOLOv3, YOLOv4, and YOLOv4-tiny in terms of detection performance. Sesame crops and weeds received F1 scores of 0.91 and 0.92, respectively, while the mAP was 96.16%. The detecting frame rate was 36.8 per second. In conclusion, the YOLO-sesame model successfully meets the needs for accurate sesame weed detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxiao完成签到,获得积分10
刚刚
AAA完成签到,获得积分10
刚刚
yy完成签到 ,获得积分10
1秒前
1秒前
咚咚完成签到,获得积分10
1秒前
精明柜子应助风清扬采纳,获得100
1秒前
伶俐雪曼完成签到,获得积分10
1秒前
如意书桃完成签到 ,获得积分10
2秒前
Aile。完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
lucky发布了新的文献求助10
3秒前
hrrswh完成签到 ,获得积分10
3秒前
4秒前
MING发布了新的文献求助10
4秒前
好家伙完成签到,获得积分10
4秒前
EASA发布了新的文献求助10
5秒前
高高完成签到 ,获得积分10
5秒前
亦楚bank发布了新的文献求助50
5秒前
ma完成签到,获得积分10
5秒前
6秒前
ksrcc发布了新的文献求助10
6秒前
6秒前
优秀扬完成签到,获得积分10
7秒前
无花果应助贰陆采纳,获得10
7秒前
7秒前
7秒前
行走的土豆完成签到,获得积分10
8秒前
李健应助聪明纸飞机采纳,获得10
8秒前
木木SCI完成签到 ,获得积分10
8秒前
上官若男应助Valley采纳,获得10
8秒前
8秒前
不倦应助yiyi采纳,获得10
8秒前
aaxs发布了新的文献求助10
9秒前
chi完成签到,获得积分10
9秒前
喵喵苗完成签到 ,获得积分10
10秒前
10秒前
搜集达人应助Re采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257216
求助须知:如何正确求助?哪些是违规求助? 4419343
关于积分的说明 13755803
捐赠科研通 4292563
什么是DOI,文献DOI怎么找? 2355554
邀请新用户注册赠送积分活动 1352004
关于科研通互助平台的介绍 1312755