Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion

机制(生物学) 特征(语言学) 杂草 人工智能 融合 传感器融合 模式识别(心理学) 计算机科学 计算机视觉 物理 生物 植物 语言学 量子力学 哲学
作者
Jiqing Chen,Huabin Wang,Hongdu Zhang,Tian Luo,Wei Depeng,Teng Long,Zhikui Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:202: 107412-107412 被引量:78
标识
DOI:10.1016/j.compag.2022.107412
摘要

• A detection model of sesame and weeds based on YOLOv4, YOLO-sesame, is proposed. • Using local importance pooling to add attention mechanism to SPP structure. • Use SE block to improve the logic module of local importance pooling. • The ASFF structure is integrated to solve the problem of missing detection. • Effectively improve the detection accuracy while maintaining a fast detection speed. Weeds have a significant impact on sesame throughout its early stages of development, thus they must be rigorously controlled. However, the shape of sesame seedlings and weeds are similar, and the size specifications are not defined, making reliable weed detection difficult. To achieve the goal of weed recognition, the majority of solutions now use a deep learning model to learn the weed image. Weed targets with big variances in size and specification are easy to overlook with the current deep learning algorithm. As a result, standard deep learning models have room for improvement when it comes to sesame and weed recognition rates. The YOLO-sesame model is proposed to improve the efficiency and accuracy of sesame weed identification. Based on the YOLOv4 model, an attention mechanism is introduced. Local importance pooling is added to the SPP layer, on which the SE module is used as a logical module. To address the issue of large differences in target size and specifications, an adaptive spatial feature fusion structure is included at the feature fusion level. The experimental results suggest that the YOLO-sesame model proposed in this study outperforms mainstream models such as Fast R-CNN, SSD, YOLOv3, YOLOv4, and YOLOv4-tiny in terms of detection performance. Sesame crops and weeds received F1 scores of 0.91 and 0.92, respectively, while the mAP was 96.16%. The detecting frame rate was 36.8 per second. In conclusion, the YOLO-sesame model successfully meets the needs for accurate sesame weed detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
buno应助huang采纳,获得10
刚刚
蔫蔫发布了新的文献求助10
1秒前
深爱不疑发布了新的文献求助10
2秒前
李爱国应助我服有点黑采纳,获得10
2秒前
郝宝真发布了新的文献求助10
3秒前
沙拉发布了新的文献求助10
3秒前
小强发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
万能图书馆应助zww采纳,获得30
6秒前
乔路发布了新的文献求助10
7秒前
承序完成签到,获得积分10
7秒前
善学以致用应助口米嘻采纳,获得10
7秒前
8秒前
JamesPei应助沙拉采纳,获得10
8秒前
一一完成签到,获得积分20
9秒前
胖胖发布了新的文献求助10
9秒前
9秒前
CodeCraft应助LZS采纳,获得10
9秒前
务实的大叔完成签到,获得积分20
11秒前
彭于晏应助winwinhhh采纳,获得30
12秒前
12秒前
sparks发布了新的文献求助10
13秒前
HY发布了新的文献求助10
13秒前
沙拉完成签到,获得积分20
13秒前
CipherSage应助三井M采纳,获得10
13秒前
14秒前
15秒前
16秒前
栗子完成签到 ,获得积分10
16秒前
一一应助学术渣渣采纳,获得30
16秒前
17秒前
JamesPei应助Marvin42采纳,获得10
18秒前
18秒前
听风发布了新的文献求助10
20秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334409
求助须知:如何正确求助?哪些是违规求助? 2963607
关于积分的说明 8610762
捐赠科研通 2642584
什么是DOI,文献DOI怎么找? 1446799
科研通“疑难数据库(出版商)”最低求助积分说明 670421
邀请新用户注册赠送积分活动 658608