Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion

机制(生物学) 特征(语言学) 杂草 人工智能 融合 传感器融合 模式识别(心理学) 计算机科学 计算机视觉 物理 生物 植物 语言学 量子力学 哲学
作者
Jiqing Chen,Huabin Wang,Hongdu Zhang,Tian Luo,Wei Depeng,Teng Long,Zhikui Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:202: 107412-107412 被引量:91
标识
DOI:10.1016/j.compag.2022.107412
摘要

• A detection model of sesame and weeds based on YOLOv4, YOLO-sesame, is proposed. • Using local importance pooling to add attention mechanism to SPP structure. • Use SE block to improve the logic module of local importance pooling. • The ASFF structure is integrated to solve the problem of missing detection. • Effectively improve the detection accuracy while maintaining a fast detection speed. Weeds have a significant impact on sesame throughout its early stages of development, thus they must be rigorously controlled. However, the shape of sesame seedlings and weeds are similar, and the size specifications are not defined, making reliable weed detection difficult. To achieve the goal of weed recognition, the majority of solutions now use a deep learning model to learn the weed image. Weed targets with big variances in size and specification are easy to overlook with the current deep learning algorithm. As a result, standard deep learning models have room for improvement when it comes to sesame and weed recognition rates. The YOLO-sesame model is proposed to improve the efficiency and accuracy of sesame weed identification. Based on the YOLOv4 model, an attention mechanism is introduced. Local importance pooling is added to the SPP layer, on which the SE module is used as a logical module. To address the issue of large differences in target size and specifications, an adaptive spatial feature fusion structure is included at the feature fusion level. The experimental results suggest that the YOLO-sesame model proposed in this study outperforms mainstream models such as Fast R-CNN, SSD, YOLOv3, YOLOv4, and YOLOv4-tiny in terms of detection performance. Sesame crops and weeds received F1 scores of 0.91 and 0.92, respectively, while the mAP was 96.16%. The detecting frame rate was 36.8 per second. In conclusion, the YOLO-sesame model successfully meets the needs for accurate sesame weed detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张鑫发布了新的文献求助10
1秒前
王卫完成签到,获得积分10
2秒前
吱吱吱吱发布了新的文献求助10
2秒前
wqm发布了新的文献求助10
2秒前
3秒前
有魅力山河完成签到,获得积分20
3秒前
ATREE完成签到,获得积分10
4秒前
毛竹发布了新的文献求助10
5秒前
6秒前
何大青完成签到,获得积分10
7秒前
Xuan发布了新的文献求助10
7秒前
bkagyin应助吱吱吱吱采纳,获得10
9秒前
冷静之双完成签到,获得积分10
9秒前
10秒前
10秒前
Viva完成签到,获得积分10
11秒前
12秒前
13秒前
young发布了新的文献求助10
13秒前
下雨发布了新的文献求助10
13秒前
14秒前
guoguo完成签到,获得积分10
14秒前
甜甜向南完成签到,获得积分10
15秒前
DEUX完成签到,获得积分10
15秒前
极光完成签到,获得积分10
16秒前
生锈的柳叶刀完成签到,获得积分10
16秒前
17秒前
英勇凝旋完成签到,获得积分10
17秒前
毛竹完成签到,获得积分10
18秒前
木木发布了新的文献求助10
19秒前
张大星完成签到 ,获得积分10
19秒前
Ma应助刘新宇采纳,获得10
21秒前
jyyg发布了新的文献求助10
21秒前
于听枫完成签到 ,获得积分10
22秒前
小谢完成签到,获得积分10
22秒前
kelakola完成签到,获得积分10
22秒前
沉静易形应助uu采纳,获得10
23秒前
23秒前
zuo完成签到,获得积分10
23秒前
虚幻的香彤完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4629265
求助须知:如何正确求助?哪些是违规求助? 4026993
关于积分的说明 12461485
捐赠科研通 3713054
什么是DOI,文献DOI怎么找? 2048499
邀请新用户注册赠送积分活动 1080158
科研通“疑难数据库(出版商)”最低求助积分说明 962722