Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion

机制(生物学) 特征(语言学) 杂草 人工智能 融合 传感器融合 模式识别(心理学) 计算机科学 计算机视觉 物理 生物 植物 哲学 语言学 量子力学
作者
Jiqing Chen,Huabin Wang,Hongdu Zhang,Tian Luo,Wei Depeng,Teng Long,Zhikui Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:202: 107412-107412 被引量:91
标识
DOI:10.1016/j.compag.2022.107412
摘要

• A detection model of sesame and weeds based on YOLOv4, YOLO-sesame, is proposed. • Using local importance pooling to add attention mechanism to SPP structure. • Use SE block to improve the logic module of local importance pooling. • The ASFF structure is integrated to solve the problem of missing detection. • Effectively improve the detection accuracy while maintaining a fast detection speed. Weeds have a significant impact on sesame throughout its early stages of development, thus they must be rigorously controlled. However, the shape of sesame seedlings and weeds are similar, and the size specifications are not defined, making reliable weed detection difficult. To achieve the goal of weed recognition, the majority of solutions now use a deep learning model to learn the weed image. Weed targets with big variances in size and specification are easy to overlook with the current deep learning algorithm. As a result, standard deep learning models have room for improvement when it comes to sesame and weed recognition rates. The YOLO-sesame model is proposed to improve the efficiency and accuracy of sesame weed identification. Based on the YOLOv4 model, an attention mechanism is introduced. Local importance pooling is added to the SPP layer, on which the SE module is used as a logical module. To address the issue of large differences in target size and specifications, an adaptive spatial feature fusion structure is included at the feature fusion level. The experimental results suggest that the YOLO-sesame model proposed in this study outperforms mainstream models such as Fast R-CNN, SSD, YOLOv3, YOLOv4, and YOLOv4-tiny in terms of detection performance. Sesame crops and weeds received F1 scores of 0.91 and 0.92, respectively, while the mAP was 96.16%. The detecting frame rate was 36.8 per second. In conclusion, the YOLO-sesame model successfully meets the needs for accurate sesame weed detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dara997发布了新的文献求助10
1秒前
邰归发布了新的文献求助20
1秒前
Liu发布了新的文献求助10
1秒前
Potato完成签到,获得积分10
1秒前
1秒前
闪闪念文发布了新的文献求助10
1秒前
1秒前
123发布了新的文献求助10
1秒前
2秒前
2秒前
4秒前
5秒前
彳亍1117应助yxy采纳,获得20
5秒前
5秒前
ls沈小天发布了新的文献求助30
5秒前
6秒前
Mark发布了新的文献求助10
6秒前
羽翮完成签到 ,获得积分10
6秒前
义气完成签到 ,获得积分10
7秒前
善学以致用应助学术熊采纳,获得10
7秒前
充电宝应助dara997采纳,获得10
8秒前
8秒前
宋祥廷完成签到,获得积分10
9秒前
旺王雪饼完成签到 ,获得积分10
10秒前
junsizzz发布了新的文献求助10
10秒前
11秒前
wu8577应助Liu采纳,获得10
11秒前
白泽阳完成签到,获得积分10
11秒前
lelele发布了新的文献求助10
11秒前
12秒前
Ava应助Jodie采纳,获得10
12秒前
风清扬应助大媛媛采纳,获得10
12秒前
12秒前
12秒前
千俞完成签到 ,获得积分10
13秒前
搜集达人应助大bulingbulin采纳,获得10
13秒前
路过蜻蜓完成签到,获得积分10
14秒前
万能图书馆应助Pinkie采纳,获得10
14秒前
黎尘完成签到,获得积分10
15秒前
白泽阳发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963