河马信号通路
线粒体
细胞凋亡
细胞生物学
癌症研究
癌细胞
生物
癌症
信号转导
丙戊酸
乳腺癌
化学
生物化学
神经科学
遗传学
癫痫
作者
Shuguang Du,Xuanyu Wang,Ye Hu,Shuxian Zhang,Dan Wang,Qinggao Zhang,Shuangping Liu
出处
期刊:Life Sciences
[Elsevier BV]
日期:2022-09-17
卷期号:309: 120976-120976
被引量:2
标识
DOI:10.1016/j.lfs.2022.120976
摘要
To determine the effects of valproic acid (VPA) on anti-proliferative effects and mitochondrial function in breast cancer cells and the underlying mechanisms involved in the effects, with a focus on signal transduction. The inhibitory effect of valproic acid on breast cancer in vivo and in vitro was evaluated by cellular and animal experiments. Mitochondria-related proteins as well as hippo pathway were monitored by western blotting. The effects of VPA on mitochondrial membrane potential, reactive oxygen species, and apoptosis were confirmed by flow cytometry. In addition, the involvement of hippo pathway in the regulation of mitochondrial function by VPA was verified by XMU-MP-1 (MST2 inhibitor). In this study, we highlight that VPA significantly attenuates mitochondrial function, leading to inhibited cell proliferation and reduced colony formation in MCF-7 and MDA-MB-231 breast cancer cells. Mechanistically, VPA-induced suppression of mitochondrial aerobic respiration was mediated by decreased expression of mitochondrial elongation factor 1 through activation of the hippo pathway, resulting in impaired breast cancer growth. In summary, we uncover a novel mechanism of VPA in regulating mitochondrial aerobic respiration, which is essential for developing an effective approach in breast cancer therapy. Mitochondrial aerobic respiration and its products are the main sources of energy for tumors; therefore, studying the role of mitochondrial function in tumor cells is significant. VPA has been used as a therapeutic agent for cancer. However, the detail mechanism underlying the effects of VPA on mitochondrial function in breast cancer remains unclear.
科研通智能强力驱动
Strongly Powered by AbleSci AI