Unique Behaviors and Mechanism of Highly Soluble Salt-Induced Wetting in Membrane Distillation

润湿 溶解 膜蒸馏 化学工程 化学 缩放比例 结晶 水蒸气 焊剂(冶金) 海水淡化 材料科学 有机化学 工程类 几何学 生物化学 数学
作者
Danting Shi,Tengjing Gong,Qing Wang,Xianhui Li,Senlin Shao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (20): 14788-14796 被引量:36
标识
DOI:10.1021/acs.est.2c03348
摘要

Scaling-induced wettinggreatly limits the application of membrane distillation (MD) for the desalination of high-salinity feed. Although highly soluble salts (e.g., NaCl) have high concentrations in this water, their scaling-induced wetting remains overlooked. To unravel the elusive wetting behaviors of highly soluble salts, in this study, we systematically investigated the scaling formation and wetting progress by in situ observation with optical coherence tomography (OCT). Through examining the influence of salt type and vapor flux on the wetting behavior, we revealed that highly soluble salt-induced wetting, especially under high vapor flux, shared several unique features: (1) occurring before the bulk feed reached saturation, (2) no scale layer formation observed, and (3) synchronized wetting progress on the millimeter scale. We demonstrated that a moving scale layer caused these interesting phenomena. The initial high vapor flux induced high concentration and temperature polarizations, which led to crystallization at the gas–liquid interface and the formation of an initial scale layer. On the one hand, this scale layer bridged the water into the hydrophobic pores; on the other hand, it blocked the membrane pores and reduced the vapor flux. In this way, the decreased vapor flux mitigated the concentration/temperature polarizations, and consequently led to the dissolution of the feed-facing side of the scale layer. This dissolution prevented the membrane pores from being completely blocked, facilitating the transportation and crystallization of salts at the distillate-facing side of the scale layer (i.e., the gas–liquid interface), thus the proceeding of the wetting layer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MOD完成签到,获得积分10
刚刚
1秒前
今后应助令和采纳,获得30
1秒前
知止发布了新的文献求助10
1秒前
1秒前
1秒前
fable完成签到,获得积分10
1秒前
领导范儿应助张文杰采纳,获得10
1秒前
2秒前
Hello应助无风风采纳,获得10
3秒前
浮游应助lu2025采纳,获得10
4秒前
zz关闭了zz文献求助
4秒前
yuanshl1985发布了新的文献求助10
4秒前
4秒前
4秒前
冰阔罗发布了新的文献求助10
6秒前
Sherlly发布了新的文献求助10
6秒前
贺光萌发布了新的文献求助10
7秒前
7秒前
宇文一发布了新的文献求助10
7秒前
8秒前
sss完成签到 ,获得积分10
8秒前
勤恳寒安发布了新的文献求助10
8秒前
123应助ok采纳,获得10
8秒前
chenlike完成签到,获得积分10
9秒前
Hello应助研友_48y70n采纳,获得10
10秒前
Alberta完成签到,获得积分10
10秒前
10秒前
大模型应助坦率的谷雪采纳,获得10
10秒前
11秒前
芋泥面包发布了新的文献求助10
11秒前
11秒前
852应助dichloro采纳,获得10
12秒前
12秒前
12秒前
12秒前
cocopan发布了新的文献求助10
13秒前
友好凡霜完成签到,获得积分10
13秒前
张文杰发布了新的文献求助10
14秒前
二狗完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790