Unique Behaviors and Mechanism of Highly Soluble Salt-Induced Wetting in Membrane Distillation

润湿 溶解 膜蒸馏 化学工程 化学 缩放比例 结晶 水蒸气 焊剂(冶金) 海水淡化 材料科学 有机化学 工程类 几何学 生物化学 数学
作者
Danting Shi,Tengjing Gong,Qing Wang,Xianhui Li,Senlin Shao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (20): 14788-14796 被引量:36
标识
DOI:10.1021/acs.est.2c03348
摘要

Scaling-induced wettinggreatly limits the application of membrane distillation (MD) for the desalination of high-salinity feed. Although highly soluble salts (e.g., NaCl) have high concentrations in this water, their scaling-induced wetting remains overlooked. To unravel the elusive wetting behaviors of highly soluble salts, in this study, we systematically investigated the scaling formation and wetting progress by in situ observation with optical coherence tomography (OCT). Through examining the influence of salt type and vapor flux on the wetting behavior, we revealed that highly soluble salt-induced wetting, especially under high vapor flux, shared several unique features: (1) occurring before the bulk feed reached saturation, (2) no scale layer formation observed, and (3) synchronized wetting progress on the millimeter scale. We demonstrated that a moving scale layer caused these interesting phenomena. The initial high vapor flux induced high concentration and temperature polarizations, which led to crystallization at the gas–liquid interface and the formation of an initial scale layer. On the one hand, this scale layer bridged the water into the hydrophobic pores; on the other hand, it blocked the membrane pores and reduced the vapor flux. In this way, the decreased vapor flux mitigated the concentration/temperature polarizations, and consequently led to the dissolution of the feed-facing side of the scale layer. This dissolution prevented the membrane pores from being completely blocked, facilitating the transportation and crystallization of salts at the distillate-facing side of the scale layer (i.e., the gas–liquid interface), thus the proceeding of the wetting layer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aryac发布了新的文献求助10
1秒前
Jasper应助yolo采纳,获得10
1秒前
不倦应助haoyooo采纳,获得10
2秒前
2秒前
cnspower应助意已采纳,获得30
2秒前
yehuitao完成签到,获得积分10
2秒前
shotaro完成签到,获得积分10
2秒前
Hydaily发布了新的文献求助10
2秒前
科研通AI6应助是个哑巴采纳,获得10
3秒前
3秒前
ggsddu完成签到,获得积分10
4秒前
4秒前
zzzzzp发布了新的文献求助10
4秒前
4秒前
Jiaxin发布了新的文献求助10
4秒前
ikun完成签到,获得积分10
4秒前
邓什么邓发布了新的文献求助10
5秒前
5秒前
欧阳铭发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
punchline2025完成签到,获得积分10
5秒前
Carlos完成签到,获得积分20
6秒前
乐观伟诚完成签到,获得积分10
6秒前
踏雾发布了新的文献求助10
6秒前
7秒前
7秒前
李大锤发布了新的文献求助10
8秒前
8秒前
8秒前
乐观伟诚发布了新的文献求助10
9秒前
小马甲应助Aryac采纳,获得10
9秒前
lucky发布了新的文献求助10
9秒前
刘雨然发布了新的文献求助10
9秒前
要减肥冰菱完成签到,获得积分10
9秒前
yyy完成签到,获得积分10
9秒前
10秒前
JLLLLLLLL发布了新的文献求助10
10秒前
椰丝Achi关注了科研通微信公众号
10秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667488
求助须知:如何正确求助?哪些是违规求助? 4886195
关于积分的说明 15120469
捐赠科研通 4826311
什么是DOI,文献DOI怎么找? 2583920
邀请新用户注册赠送积分活动 1537973
关于科研通互助平台的介绍 1496095