亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NIR Spectrometric Approach for Geographical Origin Identification and Taste Related Compounds Content Prediction of Lushan Yunwu Tea

偏最小二乘回归 多酚 线性判别分析 化学 数学 多元统计 统计 生物化学 抗氧化剂
作者
Xiaoli Yan,Yujie Xie,Jianhua Chen,Tongji Yuan,Tuo Leng,Yi Chen,Jianhua Xie,Qiang Yu
出处
期刊:Foods [MDPI AG]
卷期号:11 (19): 2976-2976
标识
DOI:10.3390/foods11192976
摘要

Lushan Yunwu Tea is one of a unique Chinese tea series, and total polyphenols (TP), free amino acids (FAA), and polyphenols-to-amino acids ratio models (TP/FAA) represent its most important taste-related indicators. In this work, a feasibility study was proposed to simultaneously predict the authenticity identification and taste-related indicators of Lushan Yunwu tea, using near-infrared spectroscopy combined with multivariate analysis. Different waveband selections and spectral pre-processing methods were compared during the discriminant analysis (DA) and partial least squares (PLS) model-building process. The DA model achieved optimal performance in distinguishing Lushan Yunwu tea from other non-Lushan Yunwu teas, with a correct classification rate of up to 100%. The synergy interval partial least squares (siPLS) and backward interval partial least squares (biPLS) algorithms showed considerable advantages in improving the prediction performance of TP, FAA, and TP/FAA. The siPLS algorithms achieved the best prediction results for TP (RP = 0.9407, RPD = 3.00), FAA (RP = 0.9110, RPD = 2.21) and TP/FAA (RP = 0.9377, RPD = 2.90). These results indicated that NIR spectroscopy was a useful and low-cost tool by which to offer definitive quantitative and qualitative analysis for Lushan Yunwu tea.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
李娇完成签到 ,获得积分10
12秒前
SciGPT应助科研通管家采纳,获得10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
23秒前
德拉科发布了新的文献求助30
30秒前
35秒前
43秒前
50秒前
兴尽晚回舟完成签到 ,获得积分10
50秒前
52秒前
灵巧的代芙完成签到 ,获得积分10
54秒前
Raunio完成签到,获得积分10
57秒前
58秒前
德拉科完成签到,获得积分10
59秒前
1分钟前
1分钟前
mellow完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Yy发布了新的文献求助10
1分钟前
1分钟前
2分钟前
无花果应助zzb采纳,获得10
2分钟前
2分钟前
Panther完成签到,获得积分10
2分钟前
2分钟前
YVO4完成签到 ,获得积分10
2分钟前
zzb发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
hhq完成签到 ,获得积分10
2分钟前
Criminology34应助XizheWang采纳,获得30
3分钟前
Yy完成签到,获得积分20
3分钟前
ybk666完成签到,获得积分10
3分钟前
A水暖五金批发张哥完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913668
捐赠科研通 4748953
什么是DOI,文献DOI怎么找? 2549283
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474091