NIR Spectrometric Approach for Geographical Origin Identification and Taste Related Compounds Content Prediction of Lushan Yunwu Tea

偏最小二乘回归 多酚 线性判别分析 化学 数学 多元统计 统计 生物化学 抗氧化剂
作者
Xiaoli Yan,Yujie Xie,Jianhua Chen,Tongji Yuan,Tuo Leng,Yi Chen,Jianhua Xie,Qiang Yu
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:11 (19): 2976-2976
标识
DOI:10.3390/foods11192976
摘要

Lushan Yunwu Tea is one of a unique Chinese tea series, and total polyphenols (TP), free amino acids (FAA), and polyphenols-to-amino acids ratio models (TP/FAA) represent its most important taste-related indicators. In this work, a feasibility study was proposed to simultaneously predict the authenticity identification and taste-related indicators of Lushan Yunwu tea, using near-infrared spectroscopy combined with multivariate analysis. Different waveband selections and spectral pre-processing methods were compared during the discriminant analysis (DA) and partial least squares (PLS) model-building process. The DA model achieved optimal performance in distinguishing Lushan Yunwu tea from other non-Lushan Yunwu teas, with a correct classification rate of up to 100%. The synergy interval partial least squares (siPLS) and backward interval partial least squares (biPLS) algorithms showed considerable advantages in improving the prediction performance of TP, FAA, and TP/FAA. The siPLS algorithms achieved the best prediction results for TP (RP = 0.9407, RPD = 3.00), FAA (RP = 0.9110, RPD = 2.21) and TP/FAA (RP = 0.9377, RPD = 2.90). These results indicated that NIR spectroscopy was a useful and low-cost tool by which to offer definitive quantitative and qualitative analysis for Lushan Yunwu tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yydragen应助372925abc采纳,获得10
刚刚
陈过年完成签到 ,获得积分10
1秒前
蓝风铃完成签到 ,获得积分10
1秒前
大个应助江月年采纳,获得10
2秒前
walx发布了新的文献求助10
2秒前
YANA完成签到,获得积分10
3秒前
jiajiajai发布了新的文献求助10
4秒前
5秒前
KinKrit完成签到 ,获得积分10
5秒前
zsfxqq完成签到 ,获得积分10
10秒前
12秒前
英俊的铭应助木婉清采纳,获得10
14秒前
Hello应助却依然采纳,获得10
15秒前
Willy完成签到,获得积分10
18秒前
19秒前
19秒前
21秒前
23秒前
拉长的诗蕊完成签到,获得积分10
24秒前
小媛发布了新的文献求助10
25秒前
啊巴拉发布了新的文献求助10
26秒前
haha完成签到,获得积分20
27秒前
轩辕白竹发布了新的文献求助10
27秒前
28秒前
Anaero完成签到,获得积分10
28秒前
却依然发布了新的文献求助10
29秒前
29秒前
酷波er应助lbjcp3采纳,获得10
31秒前
ZiXuanCui完成签到,获得积分10
31秒前
852应助皮崇知采纳,获得10
32秒前
ding应助小媛采纳,获得10
32秒前
hzs完成签到,获得积分10
33秒前
34秒前
轩辕白竹完成签到,获得积分10
35秒前
啊巴拉完成签到,获得积分10
36秒前
小媛完成签到,获得积分10
37秒前
尊敬的花卷完成签到 ,获得积分10
37秒前
38秒前
刻苦的宛白完成签到,获得积分10
40秒前
科研圣体发布了新的文献求助10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967080
求助须知:如何正确求助?哪些是违规求助? 3512449
关于积分的说明 11163289
捐赠科研通 3247337
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804450