NIR Spectrometric Approach for Geographical Origin Identification and Taste Related Compounds Content Prediction of Lushan Yunwu Tea

偏最小二乘回归 多酚 线性判别分析 化学 数学 多元统计 统计 生物化学 抗氧化剂
作者
Xiaoli Yan,Yujie Xie,Jianhua Chen,Tongji Yuan,Tuo Leng,Yi Chen,Jianhua Xie,Qiang Yu
出处
期刊:Foods [MDPI AG]
卷期号:11 (19): 2976-2976
标识
DOI:10.3390/foods11192976
摘要

Lushan Yunwu Tea is one of a unique Chinese tea series, and total polyphenols (TP), free amino acids (FAA), and polyphenols-to-amino acids ratio models (TP/FAA) represent its most important taste-related indicators. In this work, a feasibility study was proposed to simultaneously predict the authenticity identification and taste-related indicators of Lushan Yunwu tea, using near-infrared spectroscopy combined with multivariate analysis. Different waveband selections and spectral pre-processing methods were compared during the discriminant analysis (DA) and partial least squares (PLS) model-building process. The DA model achieved optimal performance in distinguishing Lushan Yunwu tea from other non-Lushan Yunwu teas, with a correct classification rate of up to 100%. The synergy interval partial least squares (siPLS) and backward interval partial least squares (biPLS) algorithms showed considerable advantages in improving the prediction performance of TP, FAA, and TP/FAA. The siPLS algorithms achieved the best prediction results for TP (RP = 0.9407, RPD = 3.00), FAA (RP = 0.9110, RPD = 2.21) and TP/FAA (RP = 0.9377, RPD = 2.90). These results indicated that NIR spectroscopy was a useful and low-cost tool by which to offer definitive quantitative and qualitative analysis for Lushan Yunwu tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助生动的以云采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
雨相所至应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
雨相所至应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
Miller应助科研通管家采纳,获得20
3秒前
4秒前
4秒前
踏实谷蓝发布了新的文献求助10
4秒前
陈隆完成签到,获得积分10
5秒前
小用一阵完成签到,获得积分10
5秒前
5秒前
5秒前
QZF完成签到,获得积分10
5秒前
柯柯完成签到 ,获得积分10
5秒前
范仪彬发布了新的文献求助10
6秒前
6秒前
David完成签到,获得积分10
6秒前
鲤鱼青槐完成签到,获得积分10
8秒前
蕊蕊完成签到,获得积分20
8秒前
8秒前
Yhcir完成签到,获得积分10
9秒前
丘比特应助寂寞的小夏采纳,获得10
9秒前
背后的铭完成签到,获得积分10
10秒前
Yhcir发布了新的文献求助10
12秒前
13秒前
从心从心完成签到,获得积分10
13秒前
yichun完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155576
求助须知:如何正确求助?哪些是违规求助? 2806779
关于积分的说明 7870685
捐赠科研通 2465047
什么是DOI,文献DOI怎么找? 1312118
科研通“疑难数据库(出版商)”最低求助积分说明 629877
版权声明 601892