Heusler alloys: Past, properties, new alloys, and prospects

材料科学 铁磁性 自旋电子学 超晶格 凝聚态物理 纳米技术 工程物理 光电子学 物理
作者
Sheron Tavares,Kesong Yang,Marc A. Meyers
出处
期刊:Progress in Materials Science [Elsevier BV]
卷期号:132: 101017-101017 被引量:140
标识
DOI:10.1016/j.pmatsci.2022.101017
摘要

Heusler alloys, discovered serendipitously at the beginning of the twentieth century, have emerged in the twenty-first century as exciting materials for numerous remarkable functional applications, including spintronics and thermos-electric devices. The basic structural characteristic is an ordered structure with a face-centered cubic (FCC) superlattice and a body-centered cubic (BCC) unit cell. This structure separates the atoms into distances not encountered in their pure state nor disordered solid solutions and this provides the opportunity for exploring a range of novel material properties. The original alloy, Cu2MnSn, exhibited ferromagnetism, in spite of the fact that none of the three constituent elements show this behavior in their pure state. Heusler alloys have become a broad class of materials with designations including Full Heusler (with stoichiometry X2Y1Z1), Half Heusler (with stoichiometry X1Y1Z1), Inverse Heusler (IH), Binary, and Quaternary Heusler (QH). This class of materials is exiting the laboratories, where they were a curiosity and the object of basic investigations, to technological applications. We review here the steps that led to the discovery of these materials, the fundamental principles behind their magnetic and electronic properties, their mechanical properties, and the magnetic shape memory effect that some of them exhibit. The computational design of Heusler alloys is also presented, including the general workflow of the high-throughput computational material design approach, the best-known computational techniques for establishing materials stability, the proper choice of materials descriptors, and the applications of the emerging machine learning approach in the accelerated materials design. We conclude the review article with a discussion of the current challenges and future directions in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适的鼠标完成签到,获得积分10
刚刚
WTTTTTFFFFFF发布了新的文献求助10
1秒前
追寻紫安完成签到,获得积分10
1秒前
lin完成签到,获得积分10
1秒前
开朗的鞋子完成签到,获得积分10
1秒前
嘻嘻嘻完成签到,获得积分10
2秒前
LYPY发布了新的文献求助10
2秒前
2秒前
陌路孤星完成签到,获得积分10
2秒前
yuiop完成签到,获得积分10
2秒前
Hello应助重要的天空采纳,获得10
3秒前
甜甜的静柏完成签到 ,获得积分10
5秒前
马马完成签到 ,获得积分10
5秒前
CAOHOU应助左丘以云采纳,获得10
5秒前
123456完成签到,获得积分10
5秒前
那时的苹果完成签到,获得积分10
5秒前
JG完成签到 ,获得积分10
5秒前
传奇3应助nyfz2002采纳,获得10
6秒前
Hyperme完成签到,获得积分10
6秒前
7秒前
传统的松鼠完成签到 ,获得积分10
7秒前
彪壮的刺猬完成签到,获得积分10
8秒前
鹏gg完成签到,获得积分10
9秒前
9秒前
山雀发布了新的文献求助10
9秒前
宁霸完成签到,获得积分0
10秒前
虚心念桃完成签到,获得积分10
10秒前
AURORA丶完成签到 ,获得积分10
10秒前
10秒前
wanci应助WTTTTTFFFFFF采纳,获得10
11秒前
12秒前
HLElxs完成签到 ,获得积分10
12秒前
Parsifal完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
Nico多多看paper完成签到,获得积分10
13秒前
成就的绯发布了新的文献求助10
14秒前
asule13完成签到,获得积分10
15秒前
15秒前
左丘以云完成签到,获得积分10
16秒前
柯氏气团不是气团完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027