Siamese semi-disentanglement network for robust PET-CT segmentation

计算机科学 一致性(知识库) 人工智能 分割 杠杆(统计) 生成对抗网络 模式识别(心理学) 计算机视觉 图像(数学)
作者
Zhaoshuo Diao,Huiyan Jiang,Tianyu Shi,Yu‐Dong Yao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119855-119855 被引量:3
标识
DOI:10.1016/j.eswa.2023.119855
摘要

A robust PET-CT segmentation network should guarantee that models trained on the PET-CT images will still work when only CT images are available. It is particularly important due to the radioactivity and expensive cost of PET imaging, in many cases only CT images can be obtained. Disentanglement and Generative Adversarial Networks (GAN) are two commonly used strategies to deal with the missing modality. Disentanglement methods cannot successfully disentangle PET-CT images into modal features and anatomical features because PET-CT images do not satisfy anatomical information consistency constraints. GAN networks tend to ignore information that is critical for downstream tasks, such as tumor information. To address above issues, we propose a siamese semi-disentanglement network. We extract high-level shared tumor features from PET images and CT images instead of anatomical features for downstream segmentation tasks. Meanwhile, in order to leverage low-level entanglement features during segmentation, GAN is used to generate synthetic PET images from CT images. Siamese Consistency Module (SCM) is proposed to ensure that the entanglement low-level features of the synthetic PET images are consistent with the real PET images. The motivation of our proposed method is that the entanglement information discarded by the semi-disentanglement is compensated by GAN to get rid of the anatomical information consistency constraints. Also, the GAN can better retain tumor information through semi-disentanglement. We do experiments on two public PET-CT datasets and one private dataset: Soft-Tissue-Sarcoma (STS) dataset, HeadNeck dataset and LiverTumor dataset. The results show that our proposed method can successfully achieve robust PET-CT segmentation. Our proposed method outperforms other disentanglement methods and generative networks in the absence of PET modality. In the inference stage, with missing PET images, using the siamese semi-disentanglement network proposed in this paper can achieve comparable results to the full modal segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
荀语山完成签到,获得积分10
1秒前
普通西瓜完成签到,获得积分20
1秒前
1秒前
Baboonium发布了新的文献求助10
1秒前
ROOT发布了新的文献求助10
1秒前
2秒前
2秒前
ctttt发布了新的文献求助10
3秒前
3秒前
科研通AI6应助li采纳,获得10
3秒前
天天快乐应助烂漫雅彤采纳,获得10
3秒前
3秒前
xxx发布了新的文献求助10
3秒前
胡图图发布了新的文献求助20
4秒前
4秒前
4秒前
4秒前
传奇3应助圣迭戈采纳,获得10
5秒前
5秒前
普通西瓜发布了新的文献求助10
5秒前
小乔应助ss采纳,获得10
5秒前
6秒前
赘婿应助真实的过客采纳,获得10
6秒前
桶治世界发布了新的文献求助10
6秒前
科研小白发布了新的文献求助20
6秒前
BarryBee发布了新的文献求助10
6秒前
6秒前
mmol发布了新的文献求助10
6秒前
炙热的寒香完成签到,获得积分10
6秒前
酆阁完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
乐乐应助DreamSeker8采纳,获得10
7秒前
7秒前
七里香菜完成签到 ,获得积分10
8秒前
我是老大应助paov45采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389