Siamese semi-disentanglement network for robust PET-CT segmentation

计算机科学 一致性(知识库) 人工智能 分割 杠杆(统计) 生成对抗网络 模式识别(心理学) 计算机视觉 图像(数学)
作者
Zhaoshuo Diao,Huiyan Jiang,Tianyu Shi,Yu‐Dong Yao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119855-119855 被引量:3
标识
DOI:10.1016/j.eswa.2023.119855
摘要

A robust PET-CT segmentation network should guarantee that models trained on the PET-CT images will still work when only CT images are available. It is particularly important due to the radioactivity and expensive cost of PET imaging, in many cases only CT images can be obtained. Disentanglement and Generative Adversarial Networks (GAN) are two commonly used strategies to deal with the missing modality. Disentanglement methods cannot successfully disentangle PET-CT images into modal features and anatomical features because PET-CT images do not satisfy anatomical information consistency constraints. GAN networks tend to ignore information that is critical for downstream tasks, such as tumor information. To address above issues, we propose a siamese semi-disentanglement network. We extract high-level shared tumor features from PET images and CT images instead of anatomical features for downstream segmentation tasks. Meanwhile, in order to leverage low-level entanglement features during segmentation, GAN is used to generate synthetic PET images from CT images. Siamese Consistency Module (SCM) is proposed to ensure that the entanglement low-level features of the synthetic PET images are consistent with the real PET images. The motivation of our proposed method is that the entanglement information discarded by the semi-disentanglement is compensated by GAN to get rid of the anatomical information consistency constraints. Also, the GAN can better retain tumor information through semi-disentanglement. We do experiments on two public PET-CT datasets and one private dataset: Soft-Tissue-Sarcoma (STS) dataset, HeadNeck dataset and LiverTumor dataset. The results show that our proposed method can successfully achieve robust PET-CT segmentation. Our proposed method outperforms other disentanglement methods and generative networks in the absence of PET modality. In the inference stage, with missing PET images, using the siamese semi-disentanglement network proposed in this paper can achieve comparable results to the full modal segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
隐形曼青应助away采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
liyifengli完成签到,获得积分10
3秒前
大个应助cherry采纳,获得10
4秒前
6秒前
林大侠发布了新的文献求助10
7秒前
tao完成签到 ,获得积分10
7秒前
萌only发布了新的文献求助50
7秒前
哇哈哈完成签到,获得积分20
8秒前
郭佳怡发布了新的文献求助10
9秒前
9秒前
所所应助Yaseen采纳,获得10
9秒前
刮风这天完成签到,获得积分10
11秒前
11秒前
11秒前
oo发布了新的文献求助10
11秒前
12秒前
明朗发布了新的文献求助10
13秒前
13秒前
Junyi发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
Owen应助虚心飞鸟采纳,获得50
14秒前
酷波er应助nicolight采纳,获得10
14秒前
15秒前
村村发布了新的文献求助10
15秒前
大方嵩发布了新的文献求助10
17秒前
yr应助andrele采纳,获得30
17秒前
18秒前
cherry发布了新的文献求助10
18秒前
小王发布了新的文献求助10
18秒前
18秒前
QIEZI关注了科研通微信公众号
20秒前
CipherSage应助炮炮公主采纳,获得10
20秒前
lhj完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771499
求助须知:如何正确求助?哪些是违规求助? 5591993
关于积分的说明 15427668
捐赠科研通 4904815
什么是DOI,文献DOI怎么找? 2639018
邀请新用户注册赠送积分活动 1586798
关于科研通互助平台的介绍 1541797