Siamese semi-disentanglement network for robust PET-CT segmentation

计算机科学 一致性(知识库) 人工智能 分割 杠杆(统计) 生成对抗网络 模式识别(心理学) 计算机视觉 图像(数学)
作者
Zhaoshuo Diao,Huiyan Jiang,Tianyu Shi,Yu‐Dong Yao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119855-119855 被引量:3
标识
DOI:10.1016/j.eswa.2023.119855
摘要

A robust PET-CT segmentation network should guarantee that models trained on the PET-CT images will still work when only CT images are available. It is particularly important due to the radioactivity and expensive cost of PET imaging, in many cases only CT images can be obtained. Disentanglement and Generative Adversarial Networks (GAN) are two commonly used strategies to deal with the missing modality. Disentanglement methods cannot successfully disentangle PET-CT images into modal features and anatomical features because PET-CT images do not satisfy anatomical information consistency constraints. GAN networks tend to ignore information that is critical for downstream tasks, such as tumor information. To address above issues, we propose a siamese semi-disentanglement network. We extract high-level shared tumor features from PET images and CT images instead of anatomical features for downstream segmentation tasks. Meanwhile, in order to leverage low-level entanglement features during segmentation, GAN is used to generate synthetic PET images from CT images. Siamese Consistency Module (SCM) is proposed to ensure that the entanglement low-level features of the synthetic PET images are consistent with the real PET images. The motivation of our proposed method is that the entanglement information discarded by the semi-disentanglement is compensated by GAN to get rid of the anatomical information consistency constraints. Also, the GAN can better retain tumor information through semi-disentanglement. We do experiments on two public PET-CT datasets and one private dataset: Soft-Tissue-Sarcoma (STS) dataset, HeadNeck dataset and LiverTumor dataset. The results show that our proposed method can successfully achieve robust PET-CT segmentation. Our proposed method outperforms other disentanglement methods and generative networks in the absence of PET modality. In the inference stage, with missing PET images, using the siamese semi-disentanglement network proposed in this paper can achieve comparable results to the full modal segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮鸡翅完成签到,获得积分10
刚刚
yan123发布了新的文献求助10
刚刚
1秒前
Rei发布了新的文献求助10
1秒前
科研通AI2S应助木_1123采纳,获得10
1秒前
1秒前
2秒前
3秒前
3秒前
彭于晏应助文车采纳,获得10
3秒前
3秒前
了尘发布了新的文献求助10
4秒前
英俊的铭应助jiangjing采纳,获得10
4秒前
米酒汤圆发布了新的文献求助10
4秒前
海贵发布了新的文献求助20
4秒前
星辰大海应助俊逸的问兰采纳,获得10
4秒前
4秒前
笑点低青曼完成签到,获得积分10
4秒前
鲤鱼南莲发布了新的文献求助10
4秒前
4秒前
cczz发布了新的文献求助10
5秒前
5秒前
南音发布了新的文献求助10
5秒前
受伤飞柏完成签到,获得积分10
6秒前
6秒前
zyy应助badada采纳,获得10
6秒前
sloox完成签到,获得积分10
7秒前
海盗船长发布了新的文献求助20
7秒前
gwfew完成签到,获得积分10
7秒前
7秒前
7秒前
魔幻蓉发布了新的文献求助10
8秒前
8秒前
肉夹馍完成签到,获得积分10
8秒前
Anna发布了新的文献求助10
9秒前
李健的小迷弟应助Green采纳,获得10
10秒前
汉城完成签到,获得积分20
10秒前
ZZ完成签到 ,获得积分20
11秒前
weslie发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530