Siamese semi-disentanglement network for robust PET-CT segmentation

计算机科学 一致性(知识库) 人工智能 分割 杠杆(统计) 生成对抗网络 模式识别(心理学) 计算机视觉 图像(数学)
作者
Zhaoshuo Diao,Huiyan Jiang,Tianyu Shi,Yu‐Dong Yao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:223: 119855-119855 被引量:3
标识
DOI:10.1016/j.eswa.2023.119855
摘要

A robust PET-CT segmentation network should guarantee that models trained on the PET-CT images will still work when only CT images are available. It is particularly important due to the radioactivity and expensive cost of PET imaging, in many cases only CT images can be obtained. Disentanglement and Generative Adversarial Networks (GAN) are two commonly used strategies to deal with the missing modality. Disentanglement methods cannot successfully disentangle PET-CT images into modal features and anatomical features because PET-CT images do not satisfy anatomical information consistency constraints. GAN networks tend to ignore information that is critical for downstream tasks, such as tumor information. To address above issues, we propose a siamese semi-disentanglement network. We extract high-level shared tumor features from PET images and CT images instead of anatomical features for downstream segmentation tasks. Meanwhile, in order to leverage low-level entanglement features during segmentation, GAN is used to generate synthetic PET images from CT images. Siamese Consistency Module (SCM) is proposed to ensure that the entanglement low-level features of the synthetic PET images are consistent with the real PET images. The motivation of our proposed method is that the entanglement information discarded by the semi-disentanglement is compensated by GAN to get rid of the anatomical information consistency constraints. Also, the GAN can better retain tumor information through semi-disentanglement. We do experiments on two public PET-CT datasets and one private dataset: Soft-Tissue-Sarcoma (STS) dataset, HeadNeck dataset and LiverTumor dataset. The results show that our proposed method can successfully achieve robust PET-CT segmentation. Our proposed method outperforms other disentanglement methods and generative networks in the absence of PET modality. In the inference stage, with missing PET images, using the siamese semi-disentanglement network proposed in this paper can achieve comparable results to the full modal segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车半烟发布了新的文献求助10
1秒前
1秒前
烟花应助任性白云采纳,获得10
1秒前
乐乐应助朵乐doll采纳,获得10
2秒前
2秒前
李爱波发布了新的文献求助10
3秒前
3秒前
ayu完成签到,获得积分10
4秒前
QQ发布了新的文献求助10
4秒前
葛辉辉发布了新的文献求助10
4秒前
4秒前
4秒前
NexusExplorer应助椰椰芒芒采纳,获得10
4秒前
yzj发布了新的文献求助10
5秒前
大力的雪碧完成签到,获得积分20
6秒前
7秒前
汉堡包应助远方的大树采纳,获得10
7秒前
阿星捌发布了新的文献求助10
7秒前
8秒前
8秒前
老迟到的冰海完成签到,获得积分10
9秒前
9秒前
Lucas应助ayu采纳,获得10
9秒前
huhu完成签到,获得积分10
9秒前
10秒前
10秒前
妉甛完成签到,获得积分10
11秒前
852应助yjj采纳,获得10
13秒前
顾矜应助霍志美采纳,获得10
13秒前
djyu发布了新的文献求助10
14秒前
14秒前
闻屿完成签到,获得积分10
14秒前
14秒前
科研通AI5应助QQ采纳,获得10
14秒前
14秒前
YuLu发布了新的文献求助10
15秒前
宇文一发布了新的文献求助10
15秒前
xiaoju发布了新的文献求助10
15秒前
贰拾-2完成签到,获得积分10
15秒前
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639