Siamese semi-disentanglement network for robust PET-CT segmentation

计算机科学 一致性(知识库) 人工智能 分割 杠杆(统计) 生成对抗网络 模式识别(心理学) 计算机视觉 图像(数学)
作者
Zhaoshuo Diao,Huiyan Jiang,Tianyu Shi,Yu‐Dong Yao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:223: 119855-119855 被引量:3
标识
DOI:10.1016/j.eswa.2023.119855
摘要

A robust PET-CT segmentation network should guarantee that models trained on the PET-CT images will still work when only CT images are available. It is particularly important due to the radioactivity and expensive cost of PET imaging, in many cases only CT images can be obtained. Disentanglement and Generative Adversarial Networks (GAN) are two commonly used strategies to deal with the missing modality. Disentanglement methods cannot successfully disentangle PET-CT images into modal features and anatomical features because PET-CT images do not satisfy anatomical information consistency constraints. GAN networks tend to ignore information that is critical for downstream tasks, such as tumor information. To address above issues, we propose a siamese semi-disentanglement network. We extract high-level shared tumor features from PET images and CT images instead of anatomical features for downstream segmentation tasks. Meanwhile, in order to leverage low-level entanglement features during segmentation, GAN is used to generate synthetic PET images from CT images. Siamese Consistency Module (SCM) is proposed to ensure that the entanglement low-level features of the synthetic PET images are consistent with the real PET images. The motivation of our proposed method is that the entanglement information discarded by the semi-disentanglement is compensated by GAN to get rid of the anatomical information consistency constraints. Also, the GAN can better retain tumor information through semi-disentanglement. We do experiments on two public PET-CT datasets and one private dataset: Soft-Tissue-Sarcoma (STS) dataset, HeadNeck dataset and LiverTumor dataset. The results show that our proposed method can successfully achieve robust PET-CT segmentation. Our proposed method outperforms other disentanglement methods and generative networks in the absence of PET modality. In the inference stage, with missing PET images, using the siamese semi-disentanglement network proposed in this paper can achieve comparable results to the full modal segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助PatrickWu采纳,获得10
1秒前
kkk发布了新的文献求助10
1秒前
尊敬的青易完成签到,获得积分10
1秒前
2秒前
4秒前
所所应助loy采纳,获得10
4秒前
在水一方应助爱学习小LI采纳,获得10
6秒前
爆米花应助kkk采纳,获得10
6秒前
LiuChuannan完成签到 ,获得积分10
8秒前
大胆的向日葵完成签到,获得积分10
8秒前
9秒前
往返发布了新的文献求助10
10秒前
Bio应助天天采纳,获得25
11秒前
ding应助Ai_niyou采纳,获得10
13秒前
文右三完成签到,获得积分10
20秒前
wyw完成签到 ,获得积分10
23秒前
24秒前
榴莲完成签到,获得积分10
24秒前
坦率的海豚完成签到,获得积分10
26秒前
27秒前
量子星尘发布了新的文献求助30
28秒前
OSASACB完成签到 ,获得积分10
28秒前
29秒前
Rick发布了新的文献求助10
30秒前
Owen应助NCU-Xzzzz采纳,获得10
31秒前
叶寻完成签到,获得积分20
32秒前
Lilith完成签到,获得积分10
32秒前
坚强慕蕊发布了新的文献求助10
34秒前
凶狠的白桃完成签到 ,获得积分10
36秒前
36秒前
37秒前
38秒前
38秒前
38秒前
carly发布了新的文献求助10
39秒前
ZZ发布了新的文献求助10
42秒前
NCU-Xzzzz发布了新的文献求助10
43秒前
43秒前
好运连连发布了新的文献求助10
43秒前
逆时针应助胡一把采纳,获得10
44秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167