Siamese semi-disentanglement network for robust PET-CT segmentation

计算机科学 一致性(知识库) 人工智能 分割 杠杆(统计) 生成对抗网络 模式识别(心理学) 计算机视觉 图像(数学)
作者
Zhaoshuo Diao,Huiyan Jiang,Tianyu Shi,Yu‐Dong Yao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119855-119855 被引量:3
标识
DOI:10.1016/j.eswa.2023.119855
摘要

A robust PET-CT segmentation network should guarantee that models trained on the PET-CT images will still work when only CT images are available. It is particularly important due to the radioactivity and expensive cost of PET imaging, in many cases only CT images can be obtained. Disentanglement and Generative Adversarial Networks (GAN) are two commonly used strategies to deal with the missing modality. Disentanglement methods cannot successfully disentangle PET-CT images into modal features and anatomical features because PET-CT images do not satisfy anatomical information consistency constraints. GAN networks tend to ignore information that is critical for downstream tasks, such as tumor information. To address above issues, we propose a siamese semi-disentanglement network. We extract high-level shared tumor features from PET images and CT images instead of anatomical features for downstream segmentation tasks. Meanwhile, in order to leverage low-level entanglement features during segmentation, GAN is used to generate synthetic PET images from CT images. Siamese Consistency Module (SCM) is proposed to ensure that the entanglement low-level features of the synthetic PET images are consistent with the real PET images. The motivation of our proposed method is that the entanglement information discarded by the semi-disentanglement is compensated by GAN to get rid of the anatomical information consistency constraints. Also, the GAN can better retain tumor information through semi-disentanglement. We do experiments on two public PET-CT datasets and one private dataset: Soft-Tissue-Sarcoma (STS) dataset, HeadNeck dataset and LiverTumor dataset. The results show that our proposed method can successfully achieve robust PET-CT segmentation. Our proposed method outperforms other disentanglement methods and generative networks in the absence of PET modality. In the inference stage, with missing PET images, using the siamese semi-disentanglement network proposed in this paper can achieve comparable results to the full modal segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助仔仔采纳,获得10
2秒前
震动的听枫完成签到,获得积分10
3秒前
顺利毕业发布了新的文献求助10
3秒前
3秒前
VickyZWY完成签到 ,获得积分20
3秒前
NexusExplorer应助shania采纳,获得10
4秒前
4秒前
派大星的海洋裤完成签到,获得积分10
5秒前
5秒前
zz完成签到,获得积分10
5秒前
curtisness应助小垃圾爱学习采纳,获得10
6秒前
7秒前
7秒前
wangke发布了新的文献求助10
8秒前
石火发布了新的文献求助10
9秒前
小杜发布了新的文献求助10
9秒前
12秒前
13秒前
rachel03发布了新的文献求助10
15秒前
16秒前
Wu完成签到,获得积分10
16秒前
17秒前
shania发布了新的文献求助10
17秒前
17秒前
无语的如音完成签到,获得积分10
17秒前
石火完成签到,获得积分10
18秒前
qqqyoyoyo完成签到,获得积分20
19秒前
奋斗的小张完成签到 ,获得积分10
19秒前
LiangRen完成签到 ,获得积分10
20秒前
仔仔发布了新的文献求助10
21秒前
Ava应助IAMXC采纳,获得10
22秒前
qqqyoyoyo发布了新的文献求助10
22秒前
咖啡豆应助山长子采纳,获得20
23秒前
23秒前
24秒前
NexusExplorer应助张晓芳采纳,获得10
25秒前
25秒前
无奈以南完成签到 ,获得积分10
26秒前
肉包包完成签到,获得积分10
26秒前
光亮的天真完成签到 ,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143769
求助须知:如何正确求助?哪些是违规求助? 2795257
关于积分的说明 7813954
捐赠科研通 2451248
什么是DOI,文献DOI怎么找? 1304400
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413