DeepFixCX: Explainable privacy‐preserving image compression for medical image analysis

计算机科学 图像压缩 笔记本电脑 人工智能 数据压缩 像素 新颖性 深度学习 机器学习 图像(数学) 计算机视觉 数据挖掘 模式识别(心理学) 图像处理 神学 操作系统 哲学
作者
Alex Gaudio,Asim Smailagic,Christos Faloutsos,Shreshta Mohan,Elvin Johnson,Yuhao Liu,Pedro Costa,Aurélio Campilho
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:13 (4) 被引量:9
标识
DOI:10.1002/widm.1495
摘要

Abstract Explanations of a model's biases or predictions are essential to medical image analysis. Yet, explainable machine learning approaches for medical image analysis are challenged by needs to preserve privacy of patient data, and by current trends in deep learning to use unsustainably large models and large datasets. We propose DeepFixCX for explainable and privacy‐preserving medical image compression that is nimble and performant. We contribute a review of the field and a conceptual framework for simultaneous privacy and explainability via tools of compression. DeepFixCX compresses images without learning by removing or obscuring spatial and edge information. DeepFixCX is ante‐hoc explainable and gives privatized post hoc explanations of spatial and edge bias without accessing the original image. DeepFixCX privatizes images to prevent image reconstruction and mitigate patient re‐identification. DeepFixCX is nimble. Compression can occur on a laptop CPU or GPU to compress and privatize 1700 images per second of size 320 × 320. DeepFixCX enables use of low memory MLP classifiers for vision data; permitting small performance loss gives end‐to‐end MLP performance over 70× faster and batch size over 100× larger. DeepFixCX consistently improves predictive classification performance of a Deep Neural Network (DNN) by 0.02 AUC ROC on Glaucoma and Cervix Type detection datasets, and can improve multi‐label chest x‐ray classification performance in seven of 10 tested settings. In all three datasets, compression to less than 5% of original number of pixels gives matching or improved performance. Our main novelty is to define an explainability versus privacy problem and address it with lossy compression. This article is categorized under: Fundamental Concepts of Data and Knowledge > Explainable AI Commercial, Legal, and Ethical Issues > Security and Privacy Fundamental Concepts of Data and Knowledge > Big Data Mining
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAOHOU应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
wushuwen发布了新的文献求助10
1秒前
2秒前
xuan完成签到,获得积分10
3秒前
完美世界应助段一帆采纳,获得10
5秒前
少敏敏完成签到,获得积分10
7秒前
may发布了新的文献求助10
7秒前
12秒前
14秒前
兜兜关注了科研通微信公众号
14秒前
wbh完成签到,获得积分10
15秒前
太牛的GGB发布了新的文献求助10
15秒前
wbh发布了新的文献求助10
17秒前
乐乐应助may采纳,获得10
17秒前
顺利的梦菲完成签到 ,获得积分10
18秒前
777完成签到 ,获得积分10
18秒前
上官若男应助忧郁盼夏采纳,获得10
19秒前
冷艳的姿发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
25秒前
26秒前
时光发布了新的文献求助10
27秒前
28秒前
1111完成签到,获得积分10
29秒前
张怡博发布了新的文献求助10
30秒前
周em12_发布了新的文献求助10
31秒前
31秒前
积极鱼完成签到 ,获得积分10
32秒前
33秒前
研友_VZG7GZ应助无所谓的啦采纳,获得10
33秒前
科研通AI5应助无所谓的啦采纳,获得10
33秒前
田様应助无所谓的啦采纳,获得10
33秒前
多晶1发布了新的文献求助10
35秒前
烟花应助兜兜采纳,获得10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173