Research and Application of Deep Reinforcement Learning in Rotating Machinery Fault Diagnosis Under Unbalanced Samples Condition

强化学习 断层(地质) 人工智能 计算机科学 分歧(语言学) 功能(生物学) 国家(计算机科学) 机器学习 算法 语言学 哲学 进化生物学 地震学 生物 地质学
作者
Zhe Cheng,Wei Lei,Junsheng Cheng,Niaoqing Hu
出处
期刊:Mechanisms and machine science 卷期号:: 615-627
标识
DOI:10.1007/978-3-031-26193-0_55
摘要

Due to the rotating machinery is a healthy state most of the time and it is difficult to obtain enough fault data, historical data will be highly skewed to the health state, which affects the accuracy of the intelligent fault diagnosis method based on conventional deep learning (DL). In other to improve the performance of DL algorithm under unbalanced samples, a deep reinforcement learning algorithm based on actor-critic architecture combining reinforcement learning (RL) and DL is proposed in this paper, it uses DL as a basic learner to perceive input information and uses RL as decision maker to determine the health status or fault type of rotating machinery. In proposed algorithm, reward function is improved in the actor module which increases reward when agent correctly recognizes the fault classification and encourages agents to pay attention to minority fault samples, Jensen–Shannon (JS) divergence is used to calculate the distance between agent output action distribution and target distribution to relieve the reward sparsity issue in the initial training stage. In addition, an improved exploration strategy is designed, its greedy factor decreases with epochs to explore the external environment as much as possible in the initial training stage. Finally, an advanced weighted regression is introduced as a loss function to ensure that the agent updates in a beneficial direction. The experiment on PHM2009 gearbox challenge data demonstrates that the improved actor-critic framework is helpful to guide the intelligent diagnosis model based on DL to better deal with unbalanced data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助姬会会采纳,获得10
刚刚
活力立诚完成签到,获得积分10
刚刚
duduguai完成签到,获得积分10
刚刚
夏儿发布了新的文献求助10
刚刚
1秒前
Rqbnicsp完成签到,获得积分10
1秒前
1秒前
smottom应助hohokuz采纳,获得10
1秒前
brd完成签到,获得积分10
2秒前
2秒前
Plucky完成签到,获得积分10
2秒前
3秒前
谁来救救我完成签到 ,获得积分10
3秒前
蓝天发布了新的文献求助10
3秒前
3秒前
NexusExplorer应助坚强的芸遥采纳,获得10
3秒前
hhhh完成签到,获得积分10
3秒前
迷失浪人完成签到,获得积分10
4秒前
斯文败类应助qqqq采纳,获得10
4秒前
材料打工人完成签到 ,获得积分10
4秒前
4秒前
gaoqg完成签到,获得积分10
4秒前
cc完成签到 ,获得积分10
4秒前
4秒前
秋子david完成签到,获得积分10
5秒前
xiangqing完成签到 ,获得积分10
5秒前
木子完成签到,获得积分10
6秒前
Twonej应助元谷雪采纳,获得30
6秒前
whb完成签到,获得积分10
6秒前
泡菜鱼oo完成签到,获得积分20
6秒前
时尚书白发布了新的文献求助10
6秒前
完美的冬瓜完成签到,获得积分10
6秒前
7秒前
7秒前
为医消得人憔悴完成签到,获得积分10
7秒前
欢呼的镜子完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
7秒前
pandary完成签到,获得积分10
7秒前
kk完成签到,获得积分10
8秒前
hohokuz完成签到,获得积分10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197