异质结
锂(药物)
化学工程
材料科学
光电子学
费米能级
纳米技术
物理
电子
医学
工程类
量子力学
内分泌学
作者
Zhenxin Zhao,Zonglin Yi,Yunrui Duan,Rajesh Pathak,Xiaoqin Cheng,Yongzhen Wang,Jeffrey W. Elam,Xiaomin Wang
标识
DOI:10.1016/j.cej.2023.142397
摘要
Exploring advanced electrocatalysts and understanding their mechanism in regulating polysulfides-transformation is of great importance but a challenging task for lithium-sulfur batteries (LSBs). Herein, FeP/Fe2P heterostructure nanoparticles with an internal electric field, prepared by a temperature-controlled phosphating process, can effectively improve the electrocatalytic activities of the bidirectional Li2S deposition/dissolution. This improvement can be attributed to the modulating absorptivity of lithium polysulfides (LiPSs) and propelling charge transfer. The reduced d-p band center between bonding and antibonding orbitals of the Fe 3d and P 2p band in the heterostructure enables bonding with LiPSs to achieve a higher electronic concentration at the Fermi level. This regulates the adsorption-diffusion-conversion process, reduces the activation energy, and improves the Li+ diffusion. Benefiting from the boosted kinetics of the FeP/Fe2P heterostructure, the cells exhibit a high reversible capacity of 1412 mAh g−1 at 0.1 C and outstanding energy efficiency of ∼ 90% from 0.1 C to 2 C. Furthermore, the cell with high sulfur loading of 4 mg cm−2 demonstrates a high capacity of 786 mAh g−1 after 100 cycles at 0.5 C. This work presents an effective method and favorable guidance for developing advanced heterostructures in LSBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI