吡嗪
光催化
共价键
材料科学
光化学
氢键
共价有机骨架
质子
电子受体
接受者
化学
分子
有机化学
催化作用
物理
量子力学
凝聚态物理
作者
Fengdong Wang,Lijuan Yang,Xinxin Wang,Yi Rong,Libin Yang,Chenxi Zhang,Fangyou Yan,Qing‐Lun Wang
出处
期刊:Small
[Wiley]
日期:2023-03-08
卷期号:19 (23)
被引量:22
标识
DOI:10.1002/smll.202207421
摘要
The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI