弹性体
聚酯纤维
雷亚克夫
热分解
材料科学
分子动力学
化学工程
单体
复合材料
聚合物
化学
有机化学
计算化学
工程类
原子间势
作者
Xinyu Li,Yue Han,Jiajun Qu,Qionghai Chen,Wei Yuan,Guanyi Hou,Jun Liu
摘要
Bio-based polyester elastomers have been widely studied by researchers in recent years because of their comprehensive sources of monomers and environmentally friendly characteristics. However, compared with traditional petroleum-based elastomers, the thermal decomposition temperature of bio-based polyester elastomers is generally low, limiting the application of bio-based elastomers. An effective strategy to increase the intrinsic thermal decomposition temperature (Td) of bio-based elastomers is to increase the length of the monomer carbon chain in the bio-based elastomers. In this work, the content of dodecanedioic acid (DDA) in a bio-based polyester elastomer composed of butanediol (BDO) and succinic acid (SUA) was increased to improve the Td of the bio-based polyester elastomer through the reaction force-field molecular dynamics (ReaxFF-MD) simulations. And the thermal decomposition mechanism of the bio-based polyester was analyzed in detail. By calculating the change rate of the molecular chain mean square displacement (MSD), it was determined that when the content of DDA was 50%, the Td of the bio-based elastomer was up to 718 K. By calculating the activation energy of thermal decomposition and further analyzing the thermal decomposition process, it is found that the thermal decomposition of the bio-based polyester elastomer is mainly through breaking the C-O bond in the backbone. This work is expected to provide theoretical guidance for designing and fabricating highly heat-resistant bio-based elastomers by systematically exploring the thermal decomposition mechanism of bio-based polyester elastomers.
科研通智能强力驱动
Strongly Powered by AbleSci AI