模型预测控制
可操作性
PID控制器
参数统计
控制(管理)
过程(计算)
过程控制
控制理论(社会学)
控制工程
跟踪(教育)
蒸发
工程类
计算机科学
温度控制
数学
可靠性工程
人工智能
操作系统
统计
物理
热力学
教育学
心理学
作者
Ioan Naşcu,Nikolaos A. Diangelakis,Salvador García‐Muñoz,Efstratios N. Pistikopoulos
标识
DOI:10.1016/j.compchemeng.2023.108212
摘要
In this paper we present a framework to design control systems for an evaporation process in the pharmaceutical industry with the aim to deliver guaranteed operability for different molecules and under different thermodynamic scenarios. Based on a mathematical model developed within the gPROMS platform calibrated and validated with real data from experiments, three control methods are implemented and compared, (i) Proportional Integrative Derivative control (PID), (ii) Model Predictive Control (MPC) and (iii) explicit/multi-parametric Model Predictive Control (mp-MPC). The performance and limits of the derived control schemes are then established and tested for reference tracking as well as disturbances rejection.
科研通智能强力驱动
Strongly Powered by AbleSci AI