Integrative Scoring System for Survival Prediction in Patients With Locally Advanced Nasopharyngeal Carcinoma: A Retrospective Multicenter Study

医学 鼻咽癌 阶段(地层学) 放化疗 比例危险模型 内科学 磁共振成像 回顾性队列研究 肿瘤科 无进展生存期 临床试验 放射科 总体生存率 放射治疗 生物 古生物学
作者
Bin Zhang,Chun Luo,Xiao Zhang,Jing Hou,Shuyi Liu,Mingyong Gao,Lu Zhang,Zhe Jin,Qiuying Chen,Xiaoping Yu,Shuixing Zhang
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (7) 被引量:2
标识
DOI:10.1200/cci.22.00015
摘要

PURPOSE Tumor stage is crucial for prognostic evaluation and therapeutic decisions in locally advanced nasopharyngeal carcinoma (NPC) but is imprecise. We aimed to propose a new prognostic system by integrating quantitative imaging features and clinical factors. MATERIALS AND METHODS This retrospective study included 1,319 patients with stage III-IVa NPC between April 1, 2010, and July 31, 2019, who underwent pretherapy magnetic resonance imaging (MRI) and received concurrent chemoradiotherapy with or without induction chemotherapy. The hand-crafted and deep-learned features were extracted from MRI for each patient. After feature selection, the clinical score, radiomic score, deep score, and integrative scores were constructed via Cox regression analysis. The scores were validated in two external cohorts. The predictive accuracy and discrimination were measured by the area under the curve (AUC) and risk group stratification. The end points were progression-free survival (PFS), overall survival (OS), and distant metastasis-free survival (DMFS). RESULTS Both radiomics and deep learning were complementary to clinical variables (age, T stage, and N stage; all P < .05). The clinical-deep score was superior or equivalent to clinical-radiomic score, whereas it was noninferior to clinical-radiomic-deep score (all P > .05). These findings were also verified in the evaluation of OS and DMFS. The clinical-deep score yielded an AUC of 0.713 (95% CI, 0.697 to 0.729) and 0.712 (95% CI, 0.693 to 0.731) in the two external validation cohorts for predicting PFS with good calibration. This scoring system could stratify patients into high- and low-risk groups with distinct survivals (all P < .05). CONCLUSION We established and validated a prognostic system integrating clinical data and deep learning to provide an individual prediction of survival for patients with locally advanced NPC, which might inform clinicians in treatment decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lienafeihu发布了新的文献求助10
刚刚
葱油饼完成签到,获得积分10
1秒前
微纳组刘同完成签到,获得积分10
2秒前
Zuzim发布了新的文献求助10
2秒前
Tempo完成签到,获得积分10
2秒前
3秒前
天天快乐应助xzg111采纳,获得10
3秒前
小菅发布了新的文献求助10
3秒前
CLN完成签到,获得积分10
3秒前
lingjuanwu完成签到,获得积分10
4秒前
花生王子发布了新的文献求助30
4秒前
菠萝完成签到 ,获得积分10
4秒前
简单冰淇淋完成签到,获得积分10
5秒前
taoliu发布了新的文献求助10
6秒前
丘比特应助Janny采纳,获得10
6秒前
12完成签到,获得积分10
6秒前
老鼠爱吃fish完成签到,获得积分0
7秒前
branka完成签到,获得积分10
7秒前
7秒前
852应助xly采纳,获得10
7秒前
木木完成签到 ,获得积分10
8秒前
Dawn完成签到,获得积分10
8秒前
nanlinhua完成签到,获得积分10
9秒前
Zircon完成签到 ,获得积分10
9秒前
科研通AI2S应助YC采纳,获得10
9秒前
huahua应助呜呜采纳,获得10
9秒前
10秒前
10秒前
寒冷孤风发布了新的文献求助10
10秒前
江莱发布了新的文献求助10
10秒前
鸿渐于陆完成签到,获得积分10
10秒前
unqiue发布了新的文献求助10
10秒前
11秒前
慕青应助单薄静枫采纳,获得10
12秒前
湘江雨完成签到,获得积分10
12秒前
12秒前
帆帆牛完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950435
求助须知:如何正确求助?哪些是违规求助? 3495874
关于积分的说明 11079268
捐赠科研通 3226319
什么是DOI,文献DOI怎么找? 1783751
邀请新用户注册赠送积分活动 867787
科研通“疑难数据库(出版商)”最低求助积分说明 800942