Integrative Scoring System for Survival Prediction in Patients With Locally Advanced Nasopharyngeal Carcinoma: A Retrospective Multicenter Study

医学 鼻咽癌 阶段(地层学) 放化疗 比例危险模型 内科学 磁共振成像 回顾性队列研究 肿瘤科 无进展生存期 临床试验 放射科 总体生存率 放射治疗 古生物学 生物
作者
Bin Zhang,Chun Luo,Xiao Zhang,Jing Hou,Shuyi Liu,Mingyong Gao,Lu Zhang,Zhe Jin,Qiuying Chen,Xiaoping Yu,Shuixing Zhang
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (7) 被引量:2
标识
DOI:10.1200/cci.22.00015
摘要

PURPOSE Tumor stage is crucial for prognostic evaluation and therapeutic decisions in locally advanced nasopharyngeal carcinoma (NPC) but is imprecise. We aimed to propose a new prognostic system by integrating quantitative imaging features and clinical factors. MATERIALS AND METHODS This retrospective study included 1,319 patients with stage III-IVa NPC between April 1, 2010, and July 31, 2019, who underwent pretherapy magnetic resonance imaging (MRI) and received concurrent chemoradiotherapy with or without induction chemotherapy. The hand-crafted and deep-learned features were extracted from MRI for each patient. After feature selection, the clinical score, radiomic score, deep score, and integrative scores were constructed via Cox regression analysis. The scores were validated in two external cohorts. The predictive accuracy and discrimination were measured by the area under the curve (AUC) and risk group stratification. The end points were progression-free survival (PFS), overall survival (OS), and distant metastasis-free survival (DMFS). RESULTS Both radiomics and deep learning were complementary to clinical variables (age, T stage, and N stage; all P < .05). The clinical-deep score was superior or equivalent to clinical-radiomic score, whereas it was noninferior to clinical-radiomic-deep score (all P > .05). These findings were also verified in the evaluation of OS and DMFS. The clinical-deep score yielded an AUC of 0.713 (95% CI, 0.697 to 0.729) and 0.712 (95% CI, 0.693 to 0.731) in the two external validation cohorts for predicting PFS with good calibration. This scoring system could stratify patients into high- and low-risk groups with distinct survivals (all P < .05). CONCLUSION We established and validated a prognostic system integrating clinical data and deep learning to provide an individual prediction of survival for patients with locally advanced NPC, which might inform clinicians in treatment decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
d22110652发布了新的文献求助10
1秒前
沉静的语蕊完成签到 ,获得积分10
1秒前
laity发布了新的文献求助10
2秒前
2秒前
lingyan hu发布了新的文献求助10
4秒前
Luffa完成签到,获得积分10
6秒前
7秒前
8秒前
桐桐应助adfadf采纳,获得10
9秒前
rnf发布了新的文献求助10
11秒前
13秒前
菠萝吹雪完成签到,获得积分10
13秒前
laity完成签到,获得积分10
13秒前
浑灵安完成签到 ,获得积分10
14秒前
orixero应助认真银耳汤采纳,获得10
14秒前
wanci应助泡泡采纳,获得10
15秒前
禾叶完成签到 ,获得积分10
15秒前
15秒前
17秒前
成就的钢笔完成签到 ,获得积分20
18秒前
科研通AI5应助珺宸采纳,获得10
19秒前
emotional发布了新的文献求助10
19秒前
20秒前
研友_nxer7Z完成签到,获得积分10
21秒前
phy完成签到,获得积分10
23秒前
wiwin发布了新的文献求助10
23秒前
123321发布了新的文献求助10
24秒前
24秒前
d22110652发布了新的文献求助10
25秒前
斯文的白玉完成签到,获得积分10
28秒前
28秒前
Chrischelsea发布了新的文献求助10
29秒前
隐形曼青应助漂亮幻莲采纳,获得10
29秒前
wiwin完成签到,获得积分10
31秒前
32秒前
Lucas应助leo采纳,获得10
32秒前
33秒前
科研通AI5应助李志诚采纳,获得10
33秒前
飘逸若冰发布了新的文献求助10
34秒前
正直亦旋完成签到,获得积分10
35秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482184
求助须知:如何正确求助?哪些是违规求助? 3071994
关于积分的说明 9125318
捐赠科研通 2763778
什么是DOI,文献DOI怎么找? 1516692
邀请新用户注册赠送积分活动 701746
科研通“疑难数据库(出版商)”最低求助积分说明 700530