Identification of hub genes and potential molecular mechanisms related to radiotherapy sensitivity in rectal cancer based on multiple datasets

小桶 基因 生物 小RNA 计算生物学 基因表达 竞争性内源性RNA 基因表达谱 癌症研究 长非编码RNA 生物信息学 遗传学 转录组 核糖核酸
作者
Pengfei Zhao,Hongchao Zhen,Hong Zhao,Yongjie Huang,Bangwei Cao
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1) 被引量:33
标识
DOI:10.1186/s12967-023-04029-2
摘要

Abstract Background Radiotherapy resistance is the main cause of low tumor regression for locally advanced rectum adenocarcinoma (READ). The biomarkers correlated to radiotherapy sensitivity and potential molecular mechanisms have not been completely elucidated. Methods A mRNA expression profile and a gene expression dataset of READ (GSE35452) were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differentially expressed genes (DEGs) between radiotherapy responder and non-responder of READ were screened out. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for DEGs were performed. Random survival forest analysis was used to identified hub genes by randomForestSRC package. Based on CIBERSORT algorithm, Genomics of Drug Sensitivity in Cancer (GDSC) database, Gene set variation analysis (GSVA), enrichment analysis (GSEA), nomogram, motif enrichment and non-coding RNA network analyses, the associations between hub genes and immune cell infiltration, drug sensitivity, specific signaling pathways, prognosis prediction and TF – miRNA regulatory and ceRNA network were investigated. The expressions of hub genes in clinical samples were displayed with the online Human Protein Atlas (HPA). Results In total, 544 up-regulated and 575 down-regulated DEGs in READ were enrolled. Among that, three hubs including PLAGL2 , ZNF337 and ALG10 were identified. These three hub genes were significantly associated with tumor immune infiltration, different immune-related genes and sensitivity of chemotherapeutic drugs. Also, they were correlated with the expression of various disease-related genes. In addition, GSVA and GSEA analysis revealed that different expression levels of PLAGL2 , ZNF337 and ALG10 affected various signaling pathways related to disease progression. A nomogram and calibration curves based on three hub genes showed excellent prognosis predictive performance. And then, a regulatory network of transcription factor ( ZBTB6 ) - mRNA ( PLAGL2 ) and a ceRNA network of miRNA (has-miR-133b) - lncRNA were established. Finally, the results from HPA online database demonstrated the protein expression levels of PLAGL2, ZNF337 and ALG10 varied widely in READ patients. Conclusion These findings indicated that up-regulation of PLAGL2 , ZNF337 and ALG10 in READ associated with radiotherapy response and involved in multiple process of cellular biology in tumor. They might be potential predictive biomarkers for radiotherapy sensitivity and prognosis for READ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周士乐完成签到,获得积分10
刚刚
juan完成签到,获得积分10
1秒前
cheeselemon182完成签到,获得积分10
1秒前
英勇凝旋完成签到,获得积分10
2秒前
HopeStar发布了新的文献求助10
2秒前
2秒前
石幻枫完成签到 ,获得积分10
3秒前
生动盼秋发布了新的文献求助10
3秒前
韭黄发布了新的文献求助10
3秒前
Eliauk完成签到,获得积分10
4秒前
小野狼完成签到,获得积分10
4秒前
威武诺言完成签到,获得积分10
4秒前
fengye发布了新的文献求助10
4秒前
李东东完成签到 ,获得积分10
4秒前
Zn应助hulin_zjxu采纳,获得10
4秒前
海鸥海鸥发布了新的文献求助50
5秒前
小乔要努力变强完成签到,获得积分10
5秒前
YANG完成签到 ,获得积分10
5秒前
5秒前
在水一方应助马保国123采纳,获得10
5秒前
Jovid完成签到,获得积分10
6秒前
建成完成签到,获得积分10
6秒前
爆米花应助落落采纳,获得10
6秒前
852应助liu123479采纳,获得20
7秒前
7秒前
无情念之发布了新的文献求助10
7秒前
lilac应助Rocky采纳,获得10
7秒前
7秒前
深情安青应助OYE采纳,获得10
8秒前
8秒前
李爱国应助热情的阿猫桑采纳,获得10
8秒前
8秒前
8秒前
花花完成签到,获得积分10
9秒前
无花果应助韭黄采纳,获得10
9秒前
啦某某发布了新的文献求助20
10秒前
cc发布了新的文献求助30
10秒前
12秒前
一颗苹果完成签到,获得积分10
12秒前
故意的傲玉应助小月采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759