生物
蛋白质组
转录组
RNA结合蛋白
核糖核酸
细胞生物学
小分子
基因
基因表达
遗传学
作者
Stefan G. Kathman,Seong Joo Koo,Garrett L. Lindsey,Hsuan-Lin Her,Steven M. Blue,Haoxin Li,Steffen Jaensch,Jarrett R. Remsberg,Kay Ahn,G Yeo,B.K. Ghosh,Benjamin F. Cravatt
标识
DOI:10.1038/s41589-023-01270-0
摘要
Much of the human proteome is involved in mRNA homeostasis, but most RNA-binding proteins lack chemical probes. Here we identify electrophilic small molecules that rapidly and stereoselectively decrease the expression of transcripts encoding the androgen receptor and its splice variants in prostate cancer cells. We show by chemical proteomics that the compounds engage C145 of the RNA-binding protein NONO. Broader profiling revealed that covalent NONO ligands suppress an array of cancer-relevant genes and impair cancer cell proliferation. Surprisingly, these effects were not observed in cells genetically disrupted for NONO, which were instead resistant to NONO ligands. Reintroduction of wild-type NONO, but not a C145S mutant, restored ligand sensitivity in NONO-disrupted cells. The ligands promoted NONO accumulation in nuclear foci and stabilized NONO–RNA interactions, supporting a trapping mechanism that may prevent compensatory action of paralog proteins PSPC1 and SFPQ. These findings show that NONO can be co-opted by covalent small molecules to suppress protumorigenic transcriptional networks. Integrated phenotypic screening and activity-based protein profiling identifies small molecules that decrease the expression of oncogenic transcription factors and suppress cancer cell growth by covalently targeting the RNA-binding protein NONO.
科研通智能强力驱动
Strongly Powered by AbleSci AI