Handling missing data in well-log curves with a gated graph neural network

缺少数据 插补(统计学) 数据挖掘 计算机科学 人工神经网络 图形 测井 模式识别(心理学) 人工智能 机器学习 工程类 石油工程 理论计算机科学
作者
Chunbi Jiang,Dongxiao Zhang,Shifeng Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (1): D13-D30 被引量:5
标识
DOI:10.1190/geo2022-0028.1
摘要

Well logging is a common method that is used to obtain the rock properties of a formation. It is relatively frequent, however, that log information is incomplete due to cost limitations or borehole problems. Existing models predict missing well logs from a fixed combination of other available well logs. However, the missing well logs vary from well to well. We have proposed using a gated graph neural network (GNN) to handle the missing values in well-log curves. It takes sequential data, predicting each missing measurement in the data not only using other available variables measured at the same depth but also available measurements of neighboring observations. Meanwhile, the missing well logs and available well logs could be any possible combinations as long as they are mutually exclusive. This approach has two advantages: (1) the gated GNN does not need to build a specific model for each missing measurement or from every possible combination of available measurements and (2) it can be integrated into the training process of the following predictive model to perform classification tasks. We evaluate the gated GNN model along with two other models: the GRAPE model and the multiple imputation by chained equations (MICE)-gated recurrent unit (GRU) model, on a data set from the North Sea to perform a missing feature imputation task and a lithofacies identification task. The GRAPE model also is a graph-based model, and it predicts values for each missing measurement from available variables measured at the same depth. The MICE-GRU model is a combination of the MICE algorithm and GRU, which handles the feature imputation procedure and the lithofacies identification procedure separately. Our experiments find that the gated GNN model outperforms the MICE algorithm and the GRAPE model on the missing feature imputation task. For the lithofacies identification task, the gated GNN model also provides comparable results to the MICE-GRU model, and they both outperform the GRAPE model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abc应助我想查文献采纳,获得10
刚刚
li发布了新的文献求助10
1秒前
seele完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助学术混子采纳,获得10
3秒前
lfg发布了新的文献求助10
4秒前
传奇3应助Tric采纳,获得10
5秒前
JamesPei应助任梓宁采纳,获得10
5秒前
5秒前
日暮途远发布了新的文献求助10
5秒前
6秒前
6秒前
缥缈冰珍完成签到 ,获得积分10
6秒前
今后应助yujie采纳,获得10
7秒前
皇帝的床帘应助郭mm采纳,获得30
7秒前
somin发布了新的文献求助10
8秒前
今后应助乐观的菜汪采纳,获得10
8秒前
科研大圣完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
lianliyou应助秋秋采纳,获得10
10秒前
hopyyi完成签到,获得积分10
10秒前
11秒前
bocai应助大锤采纳,获得10
12秒前
13秒前
tzhzh8完成签到,获得积分10
13秒前
王梓磬发布了新的文献求助10
13秒前
13秒前
13秒前
彭于晏应助犹豫觅翠采纳,获得10
14秒前
15秒前
jokersf完成签到,获得积分10
15秒前
白凉鞋完成签到,获得积分10
15秒前
任梓宁发布了新的文献求助10
15秒前
MWH完成签到,获得积分10
15秒前
15秒前
16秒前
急急急完成签到,获得积分10
16秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3177912
求助须知:如何正确求助?哪些是违规求助? 2828898
关于积分的说明 7968908
捐赠科研通 2490130
什么是DOI,文献DOI怎么找? 1327429
科研通“疑难数据库(出版商)”最低求助积分说明 635231
版权声明 602888