Handling missing data in well-log curves with a gated graph neural network

缺少数据 插补(统计学) 数据挖掘 计算机科学 人工神经网络 图形 测井 模式识别(心理学) 人工智能 机器学习 工程类 石油工程 理论计算机科学
作者
Chunbi Jiang,Dongxiao Zhang,Shifeng Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (1): D13-D30 被引量:5
标识
DOI:10.1190/geo2022-0028.1
摘要

Well logging is a common method that is used to obtain the rock properties of a formation. It is relatively frequent, however, that log information is incomplete due to cost limitations or borehole problems. Existing models predict missing well logs from a fixed combination of other available well logs. However, the missing well logs vary from well to well. We have proposed using a gated graph neural network (GNN) to handle the missing values in well-log curves. It takes sequential data, predicting each missing measurement in the data not only using other available variables measured at the same depth but also available measurements of neighboring observations. Meanwhile, the missing well logs and available well logs could be any possible combinations as long as they are mutually exclusive. This approach has two advantages: (1) the gated GNN does not need to build a specific model for each missing measurement or from every possible combination of available measurements and (2) it can be integrated into the training process of the following predictive model to perform classification tasks. We evaluate the gated GNN model along with two other models: the GRAPE model and the multiple imputation by chained equations (MICE)-gated recurrent unit (GRU) model, on a data set from the North Sea to perform a missing feature imputation task and a lithofacies identification task. The GRAPE model also is a graph-based model, and it predicts values for each missing measurement from available variables measured at the same depth. The MICE-GRU model is a combination of the MICE algorithm and GRU, which handles the feature imputation procedure and the lithofacies identification procedure separately. Our experiments find that the gated GNN model outperforms the MICE algorithm and the GRAPE model on the missing feature imputation task. For the lithofacies identification task, the gated GNN model also provides comparable results to the MICE-GRU model, and they both outperform the GRAPE model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
shj完成签到,获得积分20
3秒前
丘比特应助小李采纳,获得10
4秒前
4秒前
研友_Lw7OvL完成签到 ,获得积分10
4秒前
千空发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
Either完成签到,获得积分20
6秒前
7秒前
哈哈哈发布了新的文献求助30
7秒前
Ayu发布了新的文献求助10
7秒前
gao发布了新的文献求助10
7秒前
翟大有完成签到 ,获得积分0
7秒前
123发布了新的文献求助10
8秒前
西扬发布了新的文献求助10
8秒前
8秒前
万物可颂完成签到,获得积分20
8秒前
9秒前
英姑应助三席采纳,获得30
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
希望天下0贩的0应助zsl采纳,获得10
10秒前
Jasper应助典雅的丹寒采纳,获得10
11秒前
JamesPei应助眯眯眼的世界采纳,获得10
11秒前
guoke发布了新的文献求助20
11秒前
迅速易云完成签到,获得积分10
11秒前
万物可颂发布了新的文献求助10
11秒前
he完成签到,获得积分10
11秒前
11秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950472
求助须知:如何正确求助?哪些是违规求助? 3495913
关于积分的说明 11079657
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783760
邀请新用户注册赠送积分活动 867823
科研通“疑难数据库(出版商)”最低求助积分说明 800942