Handling missing data in well-log curves with a gated graph neural network

缺少数据 插补(统计学) 数据挖掘 计算机科学 人工神经网络 图形 测井 模式识别(心理学) 人工智能 机器学习 工程类 石油工程 理论计算机科学
作者
Chunbi Jiang,Dongxiao Zhang,Shifeng Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (1): D13-D30 被引量:8
标识
DOI:10.1190/geo2022-0028.1
摘要

Well logging is a common method that is used to obtain the rock properties of a formation. It is relatively frequent, however, that log information is incomplete due to cost limitations or borehole problems. Existing models predict missing well logs from a fixed combination of other available well logs. However, the missing well logs vary from well to well. We have proposed using a gated graph neural network (GNN) to handle the missing values in well-log curves. It takes sequential data, predicting each missing measurement in the data not only using other available variables measured at the same depth but also available measurements of neighboring observations. Meanwhile, the missing well logs and available well logs could be any possible combinations as long as they are mutually exclusive. This approach has two advantages: (1) the gated GNN does not need to build a specific model for each missing measurement or from every possible combination of available measurements and (2) it can be integrated into the training process of the following predictive model to perform classification tasks. We evaluate the gated GNN model along with two other models: the GRAPE model and the multiple imputation by chained equations (MICE)-gated recurrent unit (GRU) model, on a data set from the North Sea to perform a missing feature imputation task and a lithofacies identification task. The GRAPE model also is a graph-based model, and it predicts values for each missing measurement from available variables measured at the same depth. The MICE-GRU model is a combination of the MICE algorithm and GRU, which handles the feature imputation procedure and the lithofacies identification procedure separately. Our experiments find that the gated GNN model outperforms the MICE algorithm and the GRAPE model on the missing feature imputation task. For the lithofacies identification task, the gated GNN model also provides comparable results to the MICE-GRU model, and they both outperform the GRAPE model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
寜1发布了新的文献求助10
刚刚
1秒前
1秒前
chunfneg发布了新的文献求助10
1秒前
沉静白翠发布了新的文献求助10
1秒前
1秒前
灿烂千阳发布了新的文献求助10
1秒前
彭静琳发布了新的文献求助10
2秒前
iNk应助瞬间de回眸采纳,获得10
2秒前
爆米花应助Kuhaku采纳,获得20
2秒前
宋佳发布了新的文献求助10
2秒前
2秒前
2秒前
林钟望完成签到,获得积分10
2秒前
3秒前
3秒前
lllisa发布了新的文献求助10
3秒前
Magical发布了新的文献求助10
3秒前
JHK完成签到,获得积分20
3秒前
思源应助Scinature采纳,获得10
3秒前
4秒前
陶醉小笼包完成签到 ,获得积分10
4秒前
4秒前
小包子发布了新的文献求助20
4秒前
自由的夜天完成签到,获得积分20
5秒前
duoduo发布了新的文献求助10
6秒前
6秒前
JHK发布了新的文献求助10
6秒前
23333完成签到,获得积分10
6秒前
Liens发布了新的文献求助10
6秒前
Honahlee发布了新的文献求助10
7秒前
7秒前
HUANG_黄完成签到,获得积分10
7秒前
SS发布了新的文献求助30
7秒前
娇气的妙之完成签到,获得积分10
8秒前
NexusExplorer应助JY采纳,获得10
8秒前
李蕤蕤完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836