Forecasting O3 and NO2 concentrations with spatiotemporally continuous coverage in southeastern China using a Machine learning approach

环境科学 中国 计算机科学 人工智能 地理 考古
作者
Zeyue Li,Jianzhao Bi,Yang Liu,Xuefei Hu
出处
期刊:Environment International [Elsevier]
卷期号:195: 109249-109249
标识
DOI:10.1016/j.envint.2024.109249
摘要

Ozone (O3) is a significant contributor to air pollution and the main constituent ofphotochemical smog that plagues China. Nitrogen dioxide (NO2) is a significant air pollutant and a critical trace gas in the Earth's atmosphere. The presence of O3 and NO2 has detrimental effects on human health, the ecosystem, and agricultural production. Forecasting accurate ambient O3 and NO2 concentrations with full spatiotemporal coverage is pivotal for decision-makers to develop effective mitigation strategies and prevent harmful public exposure. Existing methods, including chemical transport models (CTMs) and time series at air monitoring sites, forecast O3 and NO2 concentrations either with nontrivial uncertainty or without spatiotemporally continuous coverage. In this research, we adopted a forecasting model that integrates the random forest algorithm with NASA's Goddard Earth Observing System "Composing Forecasting" (GEOS-CF) product. This approach offers spatiotemporally continuous forecasts of O3 and NO2 concentrations across southeastern China for up to five days in advance. Both overall validation and spatial cross-validation revealed that our forecast framework significantly surpassed the initial GEOS-CF model for all validation metrics, substantially reducing the errors in the GEOS-CF forecast data. Our model could provide accurate near-real-time O3 and NO2 forecasts with continuous spatiotemporal coverage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MMMMM发布了新的文献求助10
1秒前
1秒前
田様应助杨洋采纳,获得10
2秒前
2秒前
niu完成签到,获得积分10
2秒前
不如一默发布了新的文献求助10
2秒前
xxxd发布了新的文献求助10
3秒前
Gorone发布了新的文献求助10
3秒前
伯劳完成签到 ,获得积分10
3秒前
华仔应助song采纳,获得10
4秒前
stuckinrain发布了新的文献求助10
4秒前
chyr发布了新的文献求助30
4秒前
灵巧的煎饼完成签到,获得积分10
4秒前
蓝天碧海小西服完成签到,获得积分0
4秒前
FashionBoy应助彪壮的小伙采纳,获得10
4秒前
4秒前
4秒前
5秒前
ZHIXIANGWENG发布了新的文献求助10
5秒前
情怀应助牛牛采纳,获得10
6秒前
共享精神应助壮观的沉鱼采纳,获得10
6秒前
7秒前
Zn应助毛哥看文献采纳,获得10
7秒前
LLL完成签到,获得积分10
8秒前
8秒前
OIIII发布了新的文献求助20
8秒前
简单点发布了新的文献求助10
9秒前
落后的小蕊完成签到,获得积分10
9秒前
9秒前
10秒前
阿月完成签到,获得积分10
10秒前
周少完成签到,获得积分10
11秒前
11秒前
思源应助火星上笑珊采纳,获得10
11秒前
12秒前
霸气魔镜发布了新的文献求助10
12秒前
12秒前
12秒前
英俊的铭应助LYL采纳,获得10
13秒前
杨洋完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126