Multi-stream encoder and multi-layer comparative learning network for fluid classification based on logging data via wavelet threshold denoising

物理 降噪 小波 模式识别(心理学) 编码器 图层(电子) 人工智能 声学 计算机科学 纳米技术 材料科学 操作系统
作者
Hengxiao Li,Sibo Qiao,Youzhuang Sun
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (11) 被引量:1
标识
DOI:10.1063/5.0237910
摘要

In recent years, the importance of fluid classification in oil and gas exploration has become increasingly evident. However, the inherent complexity of logging data and noise pose significant challenges to this task. To this end, this paper proposes a wavelet threshold denoising-based multi-stream encoder combined with multi-level comparison learning (LogMEC-MCL) framework for fluid classification. The framework begins with comprehensive noise reduction, utilizing wavelet threshold denoising to preprocess the data. It then extracts global temporal features by incorporating attention gated recurrent units within the multi-stream encoder. In parallel, multi-scale convolutional neural networks capture local spatial information, ensuring a more complete understanding of the data. To further improve the discriminative power of the extracted features, the framework includes two contrastive learning modules: instance-level contrastive learning and temporal contrastive learning. These components work together to refine feature differentiation, particularly in challenging cases. Additionally, the framework introduces a custom-designed loss function that combines cross-entropy loss with contrastive loss, thereby optimizing the classification performance. The proposed model was rigorously evaluated using a real-world logging dataset from the Tarim Basin in China. The experimental results demonstrate that LogMEC-MCL consistently outperforms current state-of-the-art models on two test datasets, achieving maximum classification accuracies of 95.70% and 95.50%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huang完成签到,获得积分10
刚刚
yyy发布了新的文献求助30
刚刚
vsooosv发布了新的文献求助10
1秒前
yyc666发布了新的文献求助10
1秒前
海晏河清完成签到,获得积分10
1秒前
xie完成签到,获得积分10
2秒前
2秒前
3秒前
不是省油的灯完成签到,获得积分10
3秒前
3秒前
研友_VZG7GZ应助危机的仰采纳,获得10
4秒前
4秒前
4秒前
4秒前
所所应助罗先生采纳,获得10
4秒前
5秒前
さくま完成签到,获得积分10
5秒前
来历历发布了新的文献求助30
5秒前
5秒前
布鲁斯盖完成签到,获得积分10
6秒前
丘比特应助Rae采纳,获得10
6秒前
搜集达人应助Rae采纳,获得10
6秒前
7秒前
愉快的犀牛完成签到 ,获得积分10
7秒前
愤怒的卓越完成签到,获得积分10
7秒前
隐形曼青应助轵关宣方采纳,获得20
7秒前
大大哈哈发布了新的文献求助10
8秒前
Cynthia完成签到 ,获得积分10
8秒前
shenzhou9发布了新的文献求助10
9秒前
完美世界应助南国之霄采纳,获得10
9秒前
思源应助天真吴邪采纳,获得10
9秒前
HM完成签到,获得积分20
10秒前
啤酒白菜发布了新的文献求助10
10秒前
10秒前
壹元侑子发布了新的文献求助20
10秒前
七月半完成签到,获得积分10
11秒前
xiaobai发布了新的文献求助10
11秒前
11秒前
一只发布了新的文献求助10
11秒前
怕黑的柚子完成签到,获得积分10
12秒前
高分求助中
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Animals in the City 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707331
求助须知:如何正确求助?哪些是违规求助? 3256009
关于积分的说明 9898600
捐赠科研通 2968514
什么是DOI,文献DOI怎么找? 1627976
邀请新用户注册赠送积分活动 771881
科研通“疑难数据库(出版商)”最低求助积分说明 743484