铁酸盐
针铁矿
鳞片岩
磁铁矿
缺氧水域
蒙脱石
粘土矿物
赤铁矿
化学
化学工程
非闪锌矿
成核
无机化学
矿物学
材料科学
环境化学
吸附
冶金
有机化学
工程类
作者
Hongyan Wei,Shoushu Wei,Qingze Chen,Yixuan Yang,Yang Liu,Shiqin Long,Jing Liu,Jianxi Zhu,Runliang Zhu
标识
DOI:10.1021/acs.est.4c11232
摘要
Metastable ferrihydrite nanoparticles and clay minerals always coexist as heteroaggregates in nature due to their abundance, opposite charge, and large interface energy. However, the impact of clay minerals on the transformation of ferrihydrite under anoxic conditions remains elusive. This study systematically investigated the effect of distinct clay minerals on the Fe(II)-catalyzed transformation of ferrihydrite and clarifying the underlying nanoscale mechanisms for the first time. Our results demonstrated that clay minerals could affect the production and recrystallization of labile Fe(III) (an active Fe(III) intermediate species formed by oxidation of Fe(II) at the ferrihydrite surface) by dispersing ferrihydrite aggregates. This modulation led to different transformation rates, higher crystallinity of formed lepidocrocite, and enhanced goethite formation in the heteroaggregates. Importantly, montmorillonite can accommodate Fe(II) and labile Fe(III) within its interlayer spaces, which further led to the inhibited crystallization of Fe(II) to magnetite and long-term preservation of labile Fe(III). Additionally, clay minerals served as templates for forming dendritic goethite and hexagonal magnetite nanoplates. Our findings provide new insights into the complicated roles of clay minerals in controlling the ferrihydrite transformation and other iron (oxyhydr)oxides formation, which is significant for predicting the bioavailability of iron and the fate of other coexisting contaminants.
科研通智能强力驱动
Strongly Powered by AbleSci AI