Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive accumulation of abnormal α-synuclein (α-syn) within dopaminergic neurons in the substantia nigra region of the brain. Despite excessive accumulation of α-syn being key to the pathogenesis of PD, the mechanisms governing its clearance remain elusive. In this study, we found that the endosomal sorting complex required for transport (ESCRT) system plays a crucial role in capturing and facilitating the degradation of ubiquitinated α-syn. The E3 ubiquitin ligase Listerin was found to promote K27-linked polyubiquitination of α-syn, directing it to the endosome for subsequent degradation. We showed that the deletion of the Listerin gene exacerbates the neurodegenerative progression in a mouse model of PD, whereas the overexpression of Listerin effectively mitigates disease progression in PD mice. Consequently, our study reveals a mechanism for α-syn degradation and identifies Listerin as a promising therapeutic target for the treatment of PD.