亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the Kinetics of Cu and Cd Release from Diverse Soil Dissolved Organic Matter: A Novel Hybrid Model Integrating Machine Learning with Mechanistic Kinetics Model

动力学 溶解有机碳 有机质 化学 环境化学 环境科学 有机化学 物理 量子力学
作者
Qianting Ye,Rong Li,Bin Liang,Lanlan Zhu,Jiang Xiao,Zhenqing Shi
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c08965
摘要

Kinetic release of trace metals from soil dissolved organic matter (DOM) to solution is the key process controlling the mobility and bioavailability of trace metals in soil environment. However, due to the complexity of soil DOM, predicting the reaction rates of trace metals with soil DOM from different sources remains challenging. In this study, we developed a novel hybrid model integrating machine learning with mechanistic kinetics model, which can quantitatively predict the release rates of Cu and Cd from diverse soil DOM based on their compositions and properties. Our model quantitatively demonstrated that the molecular compositions of DOM controlled metal release rates, which had more profound impact on Cu than Cd. Our modeling results also identified two key factors affecting metal release rates, in which high concentrations of Ca and Mg ions in DOM significantly decreased the release rates of Cu and Cd, and the reassociation reactions of metal ions with DOM became more significant with the release of metals from DOM. This work has provided a unified kinetic modeling framework combining both mechanistic and data-driven approaches, which offers a new perspective for developing predictive kinetics models and can be applied to different metals and DOM in dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得30
8秒前
16秒前
彭于晏应助欣喜秋天采纳,获得10
16秒前
Jolly发布了新的文献求助30
20秒前
wanci应助555采纳,获得10
23秒前
58秒前
欣喜秋天发布了新的文献求助10
1分钟前
1分钟前
123123发布了新的文献求助10
1分钟前
1分钟前
123123完成签到,获得积分10
1分钟前
zzzzz发布了新的文献求助10
1分钟前
1分钟前
英俊的铭应助欣喜秋天采纳,获得10
1分钟前
1分钟前
CHX发布了新的文献求助10
1分钟前
欣喜秋天完成签到,获得积分10
1分钟前
ls完成签到,获得积分10
1分钟前
1分钟前
WYDNBDX2013发布了新的文献求助10
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Ava应助WYDNBDX2013采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
TwentyNine完成签到,获得积分10
2分钟前
mono发布了新的文献求助30
2分钟前
2分钟前
mono完成签到,获得积分10
2分钟前
MOMO发布了新的文献求助10
2分钟前
阔达的沛文完成签到,获得积分10
2分钟前
3分钟前
3分钟前
biebie发布了新的文献求助20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459225
求助须知:如何正确求助?哪些是违规求助? 4564934
关于积分的说明 14297314
捐赠科研通 4490026
什么是DOI,文献DOI怎么找? 2459507
邀请新用户注册赠送积分活动 1449159
关于科研通互助平台的介绍 1424647