Predicting the Kinetics of Cu and Cd Release from Diverse Soil Dissolved Organic Matter: A Novel Hybrid Model Integrating Machine Learning with Mechanistic Kinetics Model

动力学 溶解有机碳 有机质 化学 环境化学 环境科学 有机化学 物理 量子力学
作者
Qianting Ye,Rong Li,Bin Liang,Lanlan Zhu,Jiang Xiao,Zhenqing Shi
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c08965
摘要

Kinetic release of trace metals from soil dissolved organic matter (DOM) to solution is the key process controlling the mobility and bioavailability of trace metals in soil environment. However, due to the complexity of soil DOM, predicting the reaction rates of trace metals with soil DOM from different sources remains challenging. In this study, we developed a novel hybrid model integrating machine learning with mechanistic kinetics model, which can quantitatively predict the release rates of Cu and Cd from diverse soil DOM based on their compositions and properties. Our model quantitatively demonstrated that the molecular compositions of DOM controlled metal release rates, which had more profound impact on Cu than Cd. Our modeling results also identified two key factors affecting metal release rates, in which high concentrations of Ca and Mg ions in DOM significantly decreased the release rates of Cu and Cd, and the reassociation reactions of metal ions with DOM became more significant with the release of metals from DOM. This work has provided a unified kinetic modeling framework combining both mechanistic and data-driven approaches, which offers a new perspective for developing predictive kinetics models and can be applied to different metals and DOM in dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣飞瑶发布了新的文献求助10
刚刚
1秒前
1秒前
简单的雁菱完成签到 ,获得积分10
2秒前
yanxuepig完成签到,获得积分10
2秒前
JM发布了新的文献求助10
2秒前
yellow_0000完成签到,获得积分10
2秒前
3秒前
小蘑菇应助zhaoh采纳,获得10
3秒前
林新宇发布了新的文献求助10
3秒前
温梦花雨完成签到 ,获得积分10
3秒前
恒弟弟发布了新的文献求助10
4秒前
传奇3应助glass_light采纳,获得10
4秒前
4秒前
自由的箴发布了新的文献求助30
5秒前
5秒前
6秒前
huilihub发布了新的文献求助10
6秒前
6秒前
6秒前
烂漫书萱完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
111关注了科研通微信公众号
9秒前
Jennifer完成签到,获得积分10
9秒前
9秒前
9秒前
奥利奥完成签到,获得积分10
9秒前
打打应助000采纳,获得10
9秒前
10秒前
huihui发布了新的文献求助10
10秒前
10秒前
11秒前
小布完成签到,获得积分10
11秒前
wuyan204完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
lh发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434739
求助须知:如何正确求助?哪些是违规求助? 4547066
关于积分的说明 14205914
捐赠科研通 4467159
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439364
关于科研通互助平台的介绍 1416076