材料科学
电解质
离子电导率
复合数
离子
离子运输机
锂(药物)
电导率
快离子导体
离子键合
化学工程
化学物理
纳米技术
电极
复合材料
物理化学
化学
有机化学
工程类
医学
内分泌学
作者
Yu‐Long Liao,Xilong Wang,Hong Yuan,Yongjian Li,Chunming Xu,Shuai Li,Jiang‐Kui Hu,Shi‐Jie Yang,Fang Deng,Jia Liu,Jia‐Qi Huang
标识
DOI:10.1002/adma.202419782
摘要
Abstract Solid‐state lithium (Li) metal batteries (SSLMBs) have garnered considerable attention due to their potential for high energy density and intrinsic safety. However, their widespread development has been hindered by the low ionic conductivity of solid‐state electrolytes. In this contribution, a novel Li‐rich transport mechanism is proposed to achieve ultrafast Li‐ion conduction in composite solid‐state electrolytes. By incorporating cation‐deficient dielectric nanofillers into polymer matrices, it is found that negatively charged cation defects effectively intensify the adsorption of Li ions, resulting in a high Li‐ion concentration enrichment on the surface of fillers. More importantly, these formed Li‐rich layers are interconnected to establish continuous ultrafast Li‐ion transport networks. The composite electrolyte exhibited a remarkably low ion transport activation energy (0.17 eV) and achieved an unprecedented ionic conductivity of approaching 1 × 10⁻ 3 S cm⁻ 1 at room temperature. The Li||LiNi 0.8 Co 0.1 Mo 0.1 O 2 full cells demonstrated an extended cycling life of over 200 cycles with a capacity retention of 70.7%. This work provides a fresh insight into improving Li‐ion transport by constructing interconnected Li‐rich transport networks, paving the way for the development of high‐performance SSLMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI