A dual-domain network with division residual connection and feature fusion for CBCT scatter correction

计算机科学 人工智能 投影(关系代数) 残余物 编码器 计算机视觉 特征(语言学) 噪音(视频) 模式识别(心理学) 图像质量 算法 图像(数学) 语言学 操作系统 哲学
作者
Shuo Yang,Zhe Wang,Linjie Chen,Ying Cheng,Huamin Wang,Xiao Bai,Guohua Cao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/adaf06
摘要

Abstract Objective. This study aims to propose a dual-domain network that not only reduces scatter artifacts but also retains structure details in CBCT. Approach. The proposed network comprises a projection-domain sub-network and an image-domain sub-network. The projection-domain sub-network utilizes a division residual network to amplify the difference between scatter signals and imaging signals, facilitating the learning of scatter signals. The image-domain sub-network contains dual encoders and a single decoder. The dual encoders extract features from two inputs parallelly, and the decoder fuses the extracted features from the two encoders and maps the fused features back to the final high-quality image. Of the two input images to the image-domain sub-network, one is the scatter-contaminated image analytically reconstructed from the scatter-contaminated projections, and the other is the pre-processed image reconstructed from the pre-processed projections produced by the projection-domain sub-network. Main results. Experimental results on both synthetic and real data demonstrate that our method can effectively reduce scatter artifacts and restore image details. Quantitative analysis using synthetic data shows the mean absolute error (MAE) was reduced by 74% and peak signal-to-noise ratio (PSNR) increased by 57% compared to the scatter-contaminated ones. Testing on real data found a 38% increase in contrast-to-noise ratio (CNR) with our method compared to the scatter-contaminated image. Additionally, our method consistently outperforms comparative methods such as U-Net, DSE-Net, RDCNN and the collimator-based method. Significance. A dual-domain network that leverages projection-domain division residual connection and image-domain feature fusion has been proposed for CBCT scatter correction. It has potential applications for reducing scatter artifacts and preserving image details in CBCT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江三村完成签到 ,获得积分10
1秒前
小亮哈哈完成签到,获得积分0
10秒前
研友_X89o6n完成签到,获得积分10
11秒前
cmh完成签到 ,获得积分10
13秒前
领导范儿应助高歌猛进采纳,获得10
16秒前
i2stay完成签到,获得积分10
19秒前
毛毛完成签到,获得积分10
20秒前
24秒前
高歌猛进发布了新的文献求助10
28秒前
fangyifang完成签到,获得积分10
33秒前
小二郎应助高歌猛进采纳,获得10
34秒前
吃吃货完成签到 ,获得积分10
38秒前
明亮梦山完成签到 ,获得积分10
42秒前
整齐的蜻蜓完成签到 ,获得积分10
48秒前
Wen完成签到 ,获得积分10
48秒前
喜悦的香之完成签到 ,获得积分10
52秒前
yes完成签到 ,获得积分10
55秒前
科研通AI5应助个性的孤风采纳,获得10
56秒前
Hjd完成签到,获得积分10
1分钟前
伶俐的语雪完成签到,获得积分10
1分钟前
1分钟前
Splaink完成签到 ,获得积分10
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
追忆发布了新的文献求助10
1分钟前
刘雨森完成签到,获得积分10
1分钟前
了凡完成签到 ,获得积分10
1分钟前
丘比特应助Wang采纳,获得10
1分钟前
xinxiangshicheng完成签到 ,获得积分10
1分钟前
跳跃太清完成签到 ,获得积分10
1分钟前
晨珂完成签到,获得积分10
1分钟前
可靠的毛巾完成签到 ,获得积分10
1分钟前
研友_GZ3zRn完成签到 ,获得积分0
1分钟前
邵123456789完成签到,获得积分10
1分钟前
科研狗完成签到 ,获得积分10
1分钟前
sss完成签到 ,获得积分10
1分钟前
YZ完成签到 ,获得积分10
1分钟前
涂涂完成签到 ,获得积分10
1分钟前
蓝意完成签到,获得积分0
1分钟前
Serein完成签到,获得积分10
1分钟前
celia完成签到 ,获得积分10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571332
求助须知:如何正确求助?哪些是违规求助? 3141926
关于积分的说明 9444874
捐赠科研通 2843331
什么是DOI,文献DOI怎么找? 1562830
邀请新用户注册赠送积分活动 731326
科研通“疑难数据库(出版商)”最低求助积分说明 718524