Plasticity tuning of thermal conductivity between nanoparticles

热导率 纳米颗粒 材料科学 可塑性 电导率 电阻率和电导率 纳米技术 复合材料 化学 物理 物理化学 量子力学
作者
Geraudys Mora-Barzaga,E. N. Miranda,Eduardo M. Bringa
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:136 (17)
标识
DOI:10.1063/5.0225591
摘要

We study the effects of uniaxial pressure on the thermal conductivity between two nanoparticles using atomistic simulation. While the system is compressed, we analyze the evolution of contact area, the relative density, and the dislocation density. Lattice thermal conductivity is calculated by non-equilibrium molecular dynamics simulations at several stages of the compression. Despite the increment of dislocation defects, thermal conductivity increases with pressure due to the increase in relative density and contact radius. The behavior of the contact radius is compared with the Johnson–Kendall–Roberts (JKR) model. While there is good agreement at low strain, after significant plasticity, signaled by the emission of dislocations from the contact region, the discrepancy with JKR grows larger with the dislocation density. The results for thermal conductivity show good agreement with previous studies at zero strain, and a theoretical model is used to accurately explain its behavior vs strain-dependent contact radius. Both the Kapitza resistance and thermal resistance decrease with strain but with very different evolution. Simulations of a bulk sample under uniaxial strain were also carried out, allowing for a clear distinction between the role of compressive stress, which increases the conductivity, vs the role of dislocations, which decrease the conductivity. For the NP system, there is the additional role of contact area, which increases with stress and also modifies conductivity. An analytical model with a single free parameter allows for a description of all these effects and matches both our bulk and NP simulation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
全智贤发布了新的文献求助10
刚刚
2秒前
学术达人应助LQY采纳,获得50
3秒前
LL完成签到,获得积分10
3秒前
5秒前
ARZIB-hhhhky完成签到,获得积分10
5秒前
5秒前
Norah完成签到,获得积分10
6秒前
6秒前
32完成签到,获得积分10
7秒前
7秒前
炼丹完成签到,获得积分10
8秒前
8秒前
海夜发布了新的文献求助10
11秒前
火星上白风完成签到,获得积分10
11秒前
负责念梦发布了新的文献求助10
11秒前
12秒前
12秒前
脑洞疼应助hyl采纳,获得10
13秒前
orixero应助无问西东采纳,获得10
14秒前
zxxx完成签到,获得积分10
14秒前
yyds应助丢丢采纳,获得50
14秒前
15秒前
LL发布了新的文献求助10
16秒前
劳达完成签到,获得积分10
16秒前
16秒前
17秒前
BZPL发布了新的文献求助10
17秒前
18秒前
李健应助江蹇采纳,获得10
19秒前
劳达发布了新的文献求助10
20秒前
负责念梦完成签到,获得积分10
20秒前
shinble发布了新的文献求助10
20秒前
djiwisksk66应助LeonPrisig采纳,获得10
21秒前
糖葫芦完成签到,获得积分10
21秒前
22秒前
22秒前
贰鸟应助张继科keke采纳,获得10
23秒前
阿姜姜姜姜完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281