DeMPAA: Deployable Multi-Mini-Patch Adversarial Attack for Remote Sensing Image Classification

对抗制 计算机科学 人工智能 图像(数学) 采样(信号处理) 梯度下降 模式识别(心理学) 机器学习 数据挖掘 人工神经网络 计算机视觉 滤波器(信号处理)
作者
Junjie Huang,Ziyue Wang,Tianrui Liu,Wenhan Luo,Zihan Chen,Wentao Zhao,Meng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:3
标识
DOI:10.1109/tgrs.2024.3397354
摘要

Deep Neural Networks (DNNs) have demonstrated excellent performance in image classification, yet remain vulnerable to adversarial attacks. Generating deployable adversarial patches represents a promising approach to safeguard critical facilities against DNN-based classifiers used for Remote Sensing Images (RSI). While existing adversarial patch attack methods are designed for natural images, they typically generate a single and large patch which is impractically oversize for RSI applications. In this paper, we propose a Deployable Multi-Mini-Patch Adversarial Attack (DeMPAA) method for RSI classification task, which deploys multiple small adversarial patches on key locations considering both the feasibility and the effectiveness. The proposed DeMPAA method formulates the problem as a constrained optimization problem that jointly optimizes patch locations and adversarial patches. The proposed DeMPAA method takes a searching and optimization strategy to tackle it. The DeMPAA framework consists of a Feasible and Effective Map Generation (FEMG) module and a Patch Generation (PG) module. The FEMG module generates a location map to guide the adversarial patch location sampling by excluding the infeasible locations and considering the location effectiveness. In the PG module, a Probability guided Random Sampling based patch location selection (PRSamp) method is used to search better locations, then we optimize the adversarial patches using gradient descent with respect to an adversarial classification loss and an imperceptibility loss. Extensive experimental results conducted on Aerial Image Dataset show that the proposed DeMPAA method achieves 94.80% attacking success rate against ResNet50 using 16 small patches, which significantly outperforms other adversarial patch methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨1234lr发布了新的文献求助10
2秒前
3秒前
云宇完成签到,获得积分10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
殷勤的紫槐应助科研通管家采纳,获得200
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Knight关注了科研通微信公众号
7秒前
7秒前
changping应助qq采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
changping应助科研通管家采纳,获得150
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得30
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
执着的一兰完成签到,获得积分10
9秒前
aaa完成签到,获得积分10
11秒前
xiaoyeken发布了新的文献求助10
13秒前
可可完成签到,获得积分20
15秒前
FashionBoy应助老武采纳,获得10
15秒前
小蘑菇应助ww采纳,获得20
17秒前
19秒前
19秒前
21秒前
小新新完成签到 ,获得积分10
22秒前
李柏桐完成签到 ,获得积分10
23秒前
aroseisarose发布了新的文献求助10
24秒前
扣扣尼哇发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299184
求助须知:如何正确求助?哪些是违规求助? 4447424
关于积分的说明 13842647
捐赠科研通 4333048
什么是DOI,文献DOI怎么找? 2378492
邀请新用户注册赠送积分活动 1373800
关于科研通互助平台的介绍 1339331