DeMPAA: Deployable Multi-Mini-Patch Adversarial Attack for Remote Sensing Image Classification

对抗制 计算机科学 人工智能 图像(数学) 采样(信号处理) 梯度下降 模式识别(心理学) 机器学习 数据挖掘 人工神经网络 计算机视觉 滤波器(信号处理)
作者
Junjie Huang,Ziyue Wang,Tianrui Liu,Wenhan Luo,Zihan Chen,Wentao Zhao,Meng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:3
标识
DOI:10.1109/tgrs.2024.3397354
摘要

Deep Neural Networks (DNNs) have demonstrated excellent performance in image classification, yet remain vulnerable to adversarial attacks. Generating deployable adversarial patches represents a promising approach to safeguard critical facilities against DNN-based classifiers used for Remote Sensing Images (RSI). While existing adversarial patch attack methods are designed for natural images, they typically generate a single and large patch which is impractically oversize for RSI applications. In this paper, we propose a Deployable Multi-Mini-Patch Adversarial Attack (DeMPAA) method for RSI classification task, which deploys multiple small adversarial patches on key locations considering both the feasibility and the effectiveness. The proposed DeMPAA method formulates the problem as a constrained optimization problem that jointly optimizes patch locations and adversarial patches. The proposed DeMPAA method takes a searching and optimization strategy to tackle it. The DeMPAA framework consists of a Feasible and Effective Map Generation (FEMG) module and a Patch Generation (PG) module. The FEMG module generates a location map to guide the adversarial patch location sampling by excluding the infeasible locations and considering the location effectiveness. In the PG module, a Probability guided Random Sampling based patch location selection (PRSamp) method is used to search better locations, then we optimize the adversarial patches using gradient descent with respect to an adversarial classification loss and an imperceptibility loss. Extensive experimental results conducted on Aerial Image Dataset show that the proposed DeMPAA method achieves 94.80% attacking success rate against ResNet50 using 16 small patches, which significantly outperforms other adversarial patch methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
liu完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
4秒前
YXIAN发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
崔风机发布了新的文献求助20
6秒前
老程完成签到,获得积分10
6秒前
7秒前
若雨凌风应助宇哥12138采纳,获得10
7秒前
丘比特应助xiaowang采纳,获得10
7秒前
可爱的函函应助柠萌采纳,获得30
8秒前
深情安青应助朴素雁山采纳,获得10
8秒前
8秒前
huohuo发布了新的文献求助10
9秒前
乐乐应助liu采纳,获得10
9秒前
慢慢发布了新的文献求助10
9秒前
XYM发布了新的文献求助10
10秒前
10秒前
含糊的耷发布了新的文献求助10
11秒前
丘比特应助王哪跑12采纳,获得10
11秒前
bkagyin应助未晞采纳,获得10
11秒前
Owen应助肥肠的枣糕啊采纳,获得10
11秒前
12秒前
eloisa发布了新的文献求助10
12秒前
BruceQ发布了新的文献求助20
13秒前
羽翼完成签到,获得积分10
13秒前
adu发布了新的文献求助10
13秒前
毛毛完成签到,获得积分20
13秒前
酷波er应助火星的雪采纳,获得10
14秒前
下午好完成签到 ,获得积分10
14秒前
英俊的铭应助威武的橘子采纳,获得10
15秒前
张三发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469715
求助须知:如何正确求助?哪些是违规求助? 3062911
关于积分的说明 9080378
捐赠科研通 2753084
什么是DOI,文献DOI怎么找? 1510742
邀请新用户注册赠送积分活动 697987
科研通“疑难数据库(出版商)”最低求助积分说明 697975