DeMPAA: Deployable Multi-Mini-Patch Adversarial Attack for Remote Sensing Image Classification

对抗制 计算机科学 人工智能 图像(数学) 采样(信号处理) 梯度下降 模式识别(心理学) 机器学习 数据挖掘 人工神经网络 计算机视觉 滤波器(信号处理)
作者
Junjie Huang,Ziyue Wang,Tianrui Liu,Wenhan Luo,Zihan Chen,Wentao Zhao,Meng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:3
标识
DOI:10.1109/tgrs.2024.3397354
摘要

Deep Neural Networks (DNNs) have demonstrated excellent performance in image classification, yet remain vulnerable to adversarial attacks. Generating deployable adversarial patches represents a promising approach to safeguard critical facilities against DNN-based classifiers used for Remote Sensing Images (RSI). While existing adversarial patch attack methods are designed for natural images, they typically generate a single and large patch which is impractically oversize for RSI applications. In this paper, we propose a Deployable Multi-Mini-Patch Adversarial Attack (DeMPAA) method for RSI classification task, which deploys multiple small adversarial patches on key locations considering both the feasibility and the effectiveness. The proposed DeMPAA method formulates the problem as a constrained optimization problem that jointly optimizes patch locations and adversarial patches. The proposed DeMPAA method takes a searching and optimization strategy to tackle it. The DeMPAA framework consists of a Feasible and Effective Map Generation (FEMG) module and a Patch Generation (PG) module. The FEMG module generates a location map to guide the adversarial patch location sampling by excluding the infeasible locations and considering the location effectiveness. In the PG module, a Probability guided Random Sampling based patch location selection (PRSamp) method is used to search better locations, then we optimize the adversarial patches using gradient descent with respect to an adversarial classification loss and an imperceptibility loss. Extensive experimental results conducted on Aerial Image Dataset show that the proposed DeMPAA method achieves 94.80% attacking success rate against ResNet50 using 16 small patches, which significantly outperforms other adversarial patch methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyjcs完成签到,获得积分0
刚刚
1秒前
胸大无肌发布了新的文献求助10
1秒前
1秒前
桔子完成签到,获得积分10
2秒前
Buster发布了新的文献求助10
3秒前
3秒前
斯文败类应助MU猫猫采纳,获得10
4秒前
xiebaor发布了新的文献求助10
4秒前
落俗发布了新的文献求助30
4秒前
liao举报黄晨雅求助涉嫌违规
5秒前
莫里发布了新的文献求助10
6秒前
尹鑫宇完成签到,获得积分20
6秒前
zhangyafei发布了新的文献求助10
6秒前
安静茗茗完成签到,获得积分20
6秒前
嘻嘻哈哈关注了科研通微信公众号
7秒前
李端端发布了新的文献求助10
7秒前
pk完成签到,获得积分10
8秒前
婷妞儿发布了新的文献求助10
8秒前
脑洞疼应助道阻且长采纳,获得30
9秒前
童童发布了新的文献求助10
9秒前
9秒前
噜噜完成签到 ,获得积分10
9秒前
胸大无肌发布了新的文献求助30
10秒前
10秒前
Buster完成签到,获得积分10
11秒前
11秒前
水水的发布了新的文献求助30
12秒前
13秒前
liao应助YJ采纳,获得30
14秒前
15秒前
tttt完成签到,获得积分10
16秒前
16秒前
16秒前
哈基米德应助玩命的凝天采纳,获得20
16秒前
16秒前
小蘑菇应助zhangyafei采纳,获得10
17秒前
18秒前
Evina应助孙淳采纳,获得10
19秒前
胸大无肌发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508741
求助须知:如何正确求助?哪些是违规求助? 4603783
关于积分的说明 14487704
捐赠科研通 4538275
什么是DOI,文献DOI怎么找? 2486895
邀请新用户注册赠送积分活动 1469458
关于科研通互助平台的介绍 1441677