Weight-based ensemble method for crop pest identification

有害生物分析 鉴定(生物学) 作物 计算机科学 人工智能 农学 生物 生态学 植物
作者
Miao Chen,Jianji Wang,Yanan Chen,Minghui Guo,Nanning Zheng
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:82: 102693-102693 被引量:1
标识
DOI:10.1016/j.ecoinf.2024.102693
摘要

Crop pests cause significant losses to agricultural production. Pests can be detected and controlled over time using accurate and effective methods, thereby reducing potential losses. However, there are challenges in realistic agricultural scenarios, such as diverse pest species and complicated environments, which render manual recognition and conventional machine learning methods insufficient. To address this issue, deep learning methods that can automatically extract features have recently been widely used for pest identification. However, accurately recognizing images that resemble complex real-world scenarios remains a challenging task for a single deep learning model. The ensemble method, which combines multiple basic models, provides a solution for improving recognition performance. In this study, we proposed two weight-based ensemble methods, VecEnsemble and MatEnsemble, constructed from vector- and matrix-based weights, respectively. The weights that combine basic models significantly influence the performance of the ensemble methods. Therefore, to effectively combine the basic models, we formulated the weight design problem as a quadratic convex optimization problem whose solution has a closed-form expression and can be computed efficiently. Our method achieved the highest accuracy of 77.39% on the large-scale complex-scene IP102 dataset, which was competitive with those of other state-of-the-art methods. Furthermore, we conducted comprehensive ablation experiments to compare our proposed methods with voting-based approaches and illustrate the scenarios in which they are applicable. These results highlight the practical significance of our method for agricultural production and provide a foundation for further research on crop pest identification. The source code is available at https://github.com/shiguangqianmo/WBEnsemble.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
march发布了新的文献求助10
刚刚
2秒前
标致绮露发布了新的文献求助10
4秒前
鲤鱼向梦发布了新的文献求助10
4秒前
7秒前
yr发布了新的文献求助10
10秒前
shashali完成签到,获得积分10
10秒前
大方谷梦完成签到 ,获得积分10
10秒前
啦啦小王~完成签到,获得积分10
11秒前
CodeCraft应助hx0107采纳,获得10
11秒前
11秒前
烟花应助标致绮露采纳,获得10
13秒前
领导范儿应助标致绮露采纳,获得20
13秒前
丘比特应助标致绮露采纳,获得10
13秒前
无花果应助标致绮露采纳,获得100
13秒前
小二郎应助小白采纳,获得10
16秒前
苏紫梗桔发布了新的文献求助10
16秒前
英姑应助西门安南采纳,获得10
17秒前
tejing1158完成签到 ,获得积分10
17秒前
shuzi发布了新的文献求助10
17秒前
19秒前
emmmm完成签到 ,获得积分20
20秒前
yozi完成签到,获得积分10
20秒前
20秒前
tongbuxiang完成签到,获得积分10
21秒前
Akim应助犹豫帆布鞋采纳,获得10
21秒前
21秒前
量子星尘发布了新的文献求助10
23秒前
AX完成签到,获得积分10
23秒前
24秒前
海洋发布了新的文献求助10
25秒前
科研通AI2S应助Rita采纳,获得30
25秒前
CodeCraft应助任小波666采纳,获得10
25秒前
25秒前
26秒前
26秒前
nly发布了新的文献求助10
26秒前
27秒前
Self完成签到,获得积分10
27秒前
大模型应助小林采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959705
求助须知:如何正确求助?哪些是违规求助? 3505951
关于积分的说明 11127133
捐赠科研通 3237931
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871709
科研通“疑难数据库(出版商)”最低求助积分说明 802976