Weight-based ensemble method for crop pest identification

有害生物分析 鉴定(生物学) 作物 计算机科学 人工智能 农学 生物 生态学 植物
作者
Miao Chen,Jianji Wang,Yanan Chen,Minghui Guo,Nanning Zheng
出处
期刊:Ecological Informatics [Elsevier]
卷期号:82: 102693-102693 被引量:1
标识
DOI:10.1016/j.ecoinf.2024.102693
摘要

Crop pests cause significant losses to agricultural production. Pests can be detected and controlled over time using accurate and effective methods, thereby reducing potential losses. However, there are challenges in realistic agricultural scenarios, such as diverse pest species and complicated environments, which render manual recognition and conventional machine learning methods insufficient. To address this issue, deep learning methods that can automatically extract features have recently been widely used for pest identification. However, accurately recognizing images that resemble complex real-world scenarios remains a challenging task for a single deep learning model. The ensemble method, which combines multiple basic models, provides a solution for improving recognition performance. In this study, we proposed two weight-based ensemble methods, VecEnsemble and MatEnsemble, constructed from vector- and matrix-based weights, respectively. The weights that combine basic models significantly influence the performance of the ensemble methods. Therefore, to effectively combine the basic models, we formulated the weight design problem as a quadratic convex optimization problem whose solution has a closed-form expression and can be computed efficiently. Our method achieved the highest accuracy of 77.39% on the large-scale complex-scene IP102 dataset, which was competitive with those of other state-of-the-art methods. Furthermore, we conducted comprehensive ablation experiments to compare our proposed methods with voting-based approaches and illustrate the scenarios in which they are applicable. These results highlight the practical significance of our method for agricultural production and provide a foundation for further research on crop pest identification. The source code is available at https://github.com/shiguangqianmo/WBEnsemble.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
owoow完成签到,获得积分20
1秒前
斯文败类应助nicole采纳,获得10
1秒前
稳稳完成签到,获得积分10
1秒前
小二郎应助芬芬采纳,获得10
1秒前
showmaker发布了新的文献求助20
2秒前
2秒前
NexusExplorer应助cmc12314采纳,获得10
2秒前
欢喜灵13完成签到,获得积分10
2秒前
owoow发布了新的文献求助10
3秒前
炝拌维C发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
7秒前
钦川发布了新的文献求助10
7秒前
夜王发布了新的文献求助10
7秒前
GTRK完成签到 ,获得积分10
7秒前
有Data发Paper完成签到 ,获得积分10
7秒前
李燕飞发布了新的文献求助10
8秒前
薛定谔的狗完成签到,获得积分10
8秒前
8秒前
9秒前
爆米花应助hahaha123213123采纳,获得10
10秒前
春池嫣韵完成签到,获得积分10
10秒前
静水流深发布了新的文献求助10
10秒前
科研通AI2S应助keykey采纳,获得10
11秒前
云端发布了新的文献求助10
12秒前
清晨一颗薄荷糖完成签到,获得积分20
12秒前
petrichor发布了新的文献求助10
12秒前
方半仙完成签到,获得积分10
13秒前
13秒前
独特乘云发布了新的文献求助10
14秒前
陶醉听芹完成签到,获得积分10
14秒前
无花果应助wqw采纳,获得10
15秒前
16秒前
aqing发布了新的文献求助10
16秒前
111完成签到,获得积分10
16秒前
脑洞疼应助Zzoe_S采纳,获得10
16秒前
yueyue完成签到,获得积分10
17秒前
南风平发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125118
求助须知:如何正确求助?哪些是违规求助? 2775421
关于积分的说明 7726646
捐赠科研通 2430997
什么是DOI,文献DOI怎么找? 1291569
科研通“疑难数据库(出版商)”最低求助积分说明 622188
版权声明 600352