Weight-based ensemble method for crop pest identification

有害生物分析 鉴定(生物学) 作物 计算机科学 人工智能 农学 生物 生态学 植物
作者
Miao Chen,Jianji Wang,Yanan Chen,Minghui Guo,Nanning Zheng
出处
期刊:Ecological Informatics [Elsevier]
卷期号:82: 102693-102693 被引量:1
标识
DOI:10.1016/j.ecoinf.2024.102693
摘要

Crop pests cause significant losses to agricultural production. Pests can be detected and controlled over time using accurate and effective methods, thereby reducing potential losses. However, there are challenges in realistic agricultural scenarios, such as diverse pest species and complicated environments, which render manual recognition and conventional machine learning methods insufficient. To address this issue, deep learning methods that can automatically extract features have recently been widely used for pest identification. However, accurately recognizing images that resemble complex real-world scenarios remains a challenging task for a single deep learning model. The ensemble method, which combines multiple basic models, provides a solution for improving recognition performance. In this study, we proposed two weight-based ensemble methods, VecEnsemble and MatEnsemble, constructed from vector- and matrix-based weights, respectively. The weights that combine basic models significantly influence the performance of the ensemble methods. Therefore, to effectively combine the basic models, we formulated the weight design problem as a quadratic convex optimization problem whose solution has a closed-form expression and can be computed efficiently. Our method achieved the highest accuracy of 77.39% on the large-scale complex-scene IP102 dataset, which was competitive with those of other state-of-the-art methods. Furthermore, we conducted comprehensive ablation experiments to compare our proposed methods with voting-based approaches and illustrate the scenarios in which they are applicable. These results highlight the practical significance of our method for agricultural production and provide a foundation for further research on crop pest identification. The source code is available at https://github.com/shiguangqianmo/WBEnsemble.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MichaelQin完成签到,获得积分10
刚刚
刚刚
苏z完成签到,获得积分20
刚刚
WFLLL发布了新的文献求助10
1秒前
1秒前
1秒前
今后应助徐爱琳采纳,获得10
1秒前
2秒前
one完成签到,获得积分10
3秒前
xinbowey发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
傻傻的霆完成签到,获得积分10
5秒前
6秒前
Akim应助DDD采纳,获得10
6秒前
7秒前
张建煌完成签到,获得积分10
7秒前
深年发布了新的文献求助10
7秒前
书雪发布了新的文献求助10
7秒前
7秒前
8秒前
yadi发布了新的文献求助10
9秒前
早日毕业发布了新的文献求助10
9秒前
今夜有雨发布了新的文献求助10
10秒前
张建煌发布了新的文献求助10
10秒前
wUP完成签到,获得积分10
10秒前
打打应助刘钱美子采纳,获得10
11秒前
12秒前
超级欧皇的好宝宝完成签到,获得积分10
12秒前
12秒前
曾经的康乃馨完成签到 ,获得积分10
13秒前
13秒前
难过手链发布了新的文献求助10
13秒前
14秒前
白日梦想家完成签到,获得积分10
14秒前
Owen应助坚定的又莲采纳,获得10
14秒前
田様应助晴云采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589068
求助须知:如何正确求助?哪些是违规求助? 4672334
关于积分的说明 14790349
捐赠科研通 4627486
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500706
关于科研通互助平台的介绍 1468396