CKG-IMC: An inductive matrix completion method enhanced by CKG and GNN for Alzheimer’s disease compound-protein interactions prediction

图形 疾病 τ蛋白 计算生物学 阿尔茨海默病 计算机科学 对接(动物) 人工智能 机器学习 医学 生物 理论计算机科学 内科学 护理部
作者
Yongna Yuan,Rizhen Hu,Siming Chen,X.H. Zhang,Zhenyu Liu,Gonghai Zhou
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:177: 108612-108612
标识
DOI:10.1016/j.compbiomed.2024.108612
摘要

Alzheimer's disease (AD) is one of the most prevalent chronic neurodegenerative disorders globally, with a rapidly growing population of AD patients and currently no effective therapeutic interventions available. Consequently, the development of therapeutic anti-AD drugs and the identification of AD targets represent one of the most urgent tasks. In this study, in addition to considering known drugs and targets, we explore compound-protein interactions (CPIs) between compounds and proteins relevant to AD. We propose a deep learning model called CKG-IMC to predict Alzheimer's disease compound-protein interaction relationships. CKG-IMC comprises three modules: a collaborative knowledge graph (CKG), a principal neighborhood aggregation graph neural network (PNA), and an inductive matrix completion (IMC). The collaborative knowledge graph is used to learn semantic associations between entities, PNA is employed to extract structural features of the relationship network, and IMC is utilized for CPIs prediction. Compared with a total of 16 baseline models based on similarities, knowledge graphs, and graph neural networks, our model achieves state-of-the-art performance in experiments of 10-fold cross-validation and independent test. Furthermore, we use CKG-IMC to predict compounds interacting with two confirmed AD targets, 42-amino-acid β-amyloid (Aβ42) protein and microtubule-associated protein tau (tau protein), as well as proteins interacting with five FDA-approved anti-AD drugs. The results indicate that the majority of predictions are supported by literature, and molecular docking experiments demonstrate a strong affinity between the predicted compounds and targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lc339完成签到,获得积分10
1秒前
1秒前
Lucas应助YoYo采纳,获得10
2秒前
2秒前
无心的薄荷完成签到,获得积分10
3秒前
3秒前
4秒前
风筝发布了新的文献求助10
5秒前
赘婿应助葛根采纳,获得10
5秒前
Anonymity发布了新的文献求助10
5秒前
南庭发布了新的文献求助10
5秒前
拼搏的代玉完成签到,获得积分10
6秒前
科研劝退完成签到,获得积分10
7秒前
YY发布了新的文献求助20
7秒前
CY完成签到,获得积分10
8秒前
出口的胖猪完成签到 ,获得积分10
9秒前
9秒前
9秒前
ossantu发布了新的文献求助10
10秒前
哈尼恒发布了新的文献求助10
11秒前
简.....完成签到,获得积分10
11秒前
欧阳宇完成签到,获得积分10
11秒前
11秒前
11秒前
活力成败完成签到,获得积分10
12秒前
YXYWZMSZ完成签到,获得积分10
12秒前
YY完成签到,获得积分10
13秒前
Ray完成签到,获得积分10
13秒前
英俊钢铁侠完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
15秒前
yyymmma发布了新的文献求助10
15秒前
CL发布了新的文献求助10
16秒前
zerlina33完成签到,获得积分10
16秒前
lrl发布了新的文献求助10
17秒前
aikeyan发布了新的文献求助10
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135173
求助须知:如何正确求助?哪些是违规求助? 2786162
关于积分的说明 7775843
捐赠科研通 2442066
什么是DOI,文献DOI怎么找? 1298380
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847