亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CKG-IMC: An inductive matrix completion method enhanced by CKG and GNN for Alzheimer’s disease compound-protein interactions prediction

图形 疾病 τ蛋白 计算生物学 阿尔茨海默病 计算机科学 对接(动物) 人工智能 机器学习 医学 生物 理论计算机科学 内科学 护理部
作者
Yongna Yuan,Rizhen Hu,Siming Chen,X.H. Zhang,Zhenyu Liu,Gonghai Zhou
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:177: 108612-108612
标识
DOI:10.1016/j.compbiomed.2024.108612
摘要

Alzheimer's disease (AD) is one of the most prevalent chronic neurodegenerative disorders globally, with a rapidly growing population of AD patients and currently no effective therapeutic interventions available. Consequently, the development of therapeutic anti-AD drugs and the identification of AD targets represent one of the most urgent tasks. In this study, in addition to considering known drugs and targets, we explore compound-protein interactions (CPIs) between compounds and proteins relevant to AD. We propose a deep learning model called CKG-IMC to predict Alzheimer's disease compound-protein interaction relationships. CKG-IMC comprises three modules: a collaborative knowledge graph (CKG), a principal neighborhood aggregation graph neural network (PNA), and an inductive matrix completion (IMC). The collaborative knowledge graph is used to learn semantic associations between entities, PNA is employed to extract structural features of the relationship network, and IMC is utilized for CPIs prediction. Compared with a total of 16 baseline models based on similarities, knowledge graphs, and graph neural networks, our model achieves state-of-the-art performance in experiments of 10-fold cross-validation and independent test. Furthermore, we use CKG-IMC to predict compounds interacting with two confirmed AD targets, 42-amino-acid β-amyloid (Aβ42) protein and microtubule-associated protein tau (tau protein), as well as proteins interacting with five FDA-approved anti-AD drugs. The results indicate that the majority of predictions are supported by literature, and molecular docking experiments demonstrate a strong affinity between the predicted compounds and targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
典雅的河马应助Carl采纳,获得10
8秒前
蛋挞发霉了完成签到,获得积分10
25秒前
35秒前
48秒前
48秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
典雅的河马应助Carl采纳,获得10
1分钟前
奔跑的青霉素完成签到 ,获得积分10
1分钟前
LPPQBB应助科研通管家采纳,获得100
1分钟前
Zhangfu完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
爆米花应助闲居冬雨采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
闲居冬雨发布了新的文献求助10
3分钟前
3分钟前
Akim应助闲居冬雨采纳,获得10
3分钟前
3分钟前
3分钟前
汪洋一叶完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5335288
求助须知:如何正确求助?哪些是违规求助? 4473170
关于积分的说明 13921343
捐赠科研通 4367324
什么是DOI,文献DOI怎么找? 2399572
邀请新用户注册赠送积分活动 1392638
关于科研通互助平台的介绍 1363840