Multi-stream domain adversarial prototype network for integrated smart roller TBM main bearing fault diagnosis across various low rotating speeds

断层(地质) 方位(导航) 对抗制 领域(数学分析) 计算机科学 实时计算 人工智能 地质学 地震学 数学 数学分析
作者
Xingchen Fu,Keming Jiao,Jianfeng Tao,Chengliang Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:250: 110284-110284
标识
DOI:10.1016/j.ress.2024.110284
摘要

The well-being of tunnel boring machines (TBM) heavily relies on the health status of main bearings, significantly impacting both safety and operational efficiency. Investigating the operation monitoring and diagnosis algorithms of TBM main bearings in practical scenarios with limited fault data and real-time variations in low-speed heavy-load operating conditions poses a research challenge. To solve these issues, a novel domain-adversarial prototype network diagnostic algorithm with a multi-stream fusion feature encoder (MDAPN) based on smart roller monitoring data is proposed. In contrast to existing external vibration monitoring schemes for bearings, monitoring data from smart rollers can mitigate complex external interference and greatly shorten the transmission path of fault sources. The algorithm encompasses a multi-stream fusion feature encoder, domain discriminator, and prototype network classifier. Specifically, the multi-stream fusion feature encoder adopts the two-stream convolutional network to deeply extract the axial-radial fused features of rollers, incorporating shallow statistical feature information. Domain-invariant features are generated based on domain adversarial learning strategies, and the prototype network classifier reduces dependence on target domain samples. An integrated smart roller main bearing fault simulation testbed was built, conducting 6 sets of cross-domain experiments. The proposed method reached an average accuracy of 98.41 % under 5-shot, surpassing the baseline method by 6.57 % at least. This validates that the MDAPN based on smart roller state exhibits excellent fault recognition performance for the main bearing under varying operational conditions with scarce available samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HOOW发布了新的文献求助10
刚刚
Lumi完成签到,获得积分20
刚刚
风趣的洙完成签到,获得积分10
刚刚
求助文献发布了新的文献求助10
2秒前
隐形曼青应助anyujie采纳,获得10
2秒前
2秒前
3秒前
李琳琳完成签到,获得积分20
3秒前
聪明梦容完成签到,获得积分10
3秒前
7秒前
合适幻竹发布了新的文献求助10
8秒前
包振宏完成签到,获得积分10
8秒前
Owen应助gusgusgus采纳,获得10
8秒前
香蕉觅云应助魔幻的半雪采纳,获得10
10秒前
11秒前
科目三应助chunjianghua采纳,获得10
12秒前
哞哞完成签到 ,获得积分10
12秒前
阿巴完成签到 ,获得积分10
12秒前
13秒前
领导范儿应助好旺采纳,获得30
13秒前
13秒前
thunder发布了新的文献求助10
16秒前
EVAN发布了新的文献求助10
17秒前
多柔比星发布了新的文献求助10
18秒前
传奇3应助tantan采纳,获得10
18秒前
19秒前
汉堡包应助俭朴的小萱采纳,获得30
20秒前
可靠的白竹完成签到 ,获得积分10
20秒前
red 哞完成签到,获得积分10
20秒前
不器完成签到 ,获得积分10
21秒前
少夫人完成签到,获得积分10
21秒前
23秒前
小科完成签到,获得积分10
24秒前
寇遥完成签到,获得积分20
25秒前
今后应助科研通管家采纳,获得10
25秒前
Jasper应助科研通管家采纳,获得10
26秒前
laber应助科研通管家采纳,获得50
26秒前
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
laber应助科研通管家采纳,获得50
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073082
求助须知:如何正确求助?哪些是违规求助? 4293232
关于积分的说明 13377905
捐赠科研通 4114645
什么是DOI,文献DOI怎么找? 2253057
邀请新用户注册赠送积分活动 1257880
关于科研通互助平台的介绍 1190739