Multi-stream domain adversarial prototype network for integrated smart roller TBM main bearing fault diagnosis across various low rotating speeds

断层(地质) 方位(导航) 对抗制 领域(数学分析) 计算机科学 实时计算 人工智能 地质学 地震学 数学 数学分析
作者
Xingchen Fu,Keming Jiao,Jianfeng Tao,Chengliang Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:250: 110284-110284
标识
DOI:10.1016/j.ress.2024.110284
摘要

The well-being of tunnel boring machines (TBM) heavily relies on the health status of main bearings, significantly impacting both safety and operational efficiency. Investigating the operation monitoring and diagnosis algorithms of TBM main bearings in practical scenarios with limited fault data and real-time variations in low-speed heavy-load operating conditions poses a research challenge. To solve these issues, a novel domain-adversarial prototype network diagnostic algorithm with a multi-stream fusion feature encoder (MDAPN) based on smart roller monitoring data is proposed. In contrast to existing external vibration monitoring schemes for bearings, monitoring data from smart rollers can mitigate complex external interference and greatly shorten the transmission path of fault sources. The algorithm encompasses a multi-stream fusion feature encoder, domain discriminator, and prototype network classifier. Specifically, the multi-stream fusion feature encoder adopts the two-stream convolutional network to deeply extract the axial-radial fused features of rollers, incorporating shallow statistical feature information. Domain-invariant features are generated based on domain adversarial learning strategies, and the prototype network classifier reduces dependence on target domain samples. An integrated smart roller main bearing fault simulation testbed was built, conducting 6 sets of cross-domain experiments. The proposed method reached an average accuracy of 98.41 % under 5-shot, surpassing the baseline method by 6.57 % at least. This validates that the MDAPN based on smart roller state exhibits excellent fault recognition performance for the main bearing under varying operational conditions with scarce available samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助痴情的绮菱采纳,获得10
刚刚
嘻嘻完成签到,获得积分10
刚刚
小吕完成签到,获得积分10
1秒前
1秒前
1秒前
充电宝应助阳光青烟采纳,获得10
1秒前
怜梦完成签到,获得积分10
1秒前
ylyla完成签到 ,获得积分10
3秒前
3秒前
完美世界应助haokeyan采纳,获得10
3秒前
搞怪藏今发布了新的文献求助10
3秒前
路宝发布了新的文献求助10
4秒前
BINbin完成签到,获得积分10
4秒前
万松辉发布了新的文献求助10
4秒前
5秒前
闪闪冰夏发布了新的文献求助10
6秒前
甜甜玫瑰应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
汉堡包应助yolk采纳,获得30
6秒前
yar应助科研通管家采纳,获得10
6秒前
ding应助wyfre采纳,获得10
6秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
杳鸢应助科研通管家采纳,获得30
6秒前
甜甜玫瑰应助科研通管家采纳,获得10
6秒前
yar应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
Liu完成签到,获得积分10
7秒前
tzy完成签到,获得积分10
7秒前
7秒前
大模型应助GLL采纳,获得10
8秒前
伊伊发布了新的文献求助10
9秒前
刘亚茹发布了新的文献求助10
9秒前
library2025给library2025的求助进行了留言
9秒前
10秒前
Catalysis123发布了新的文献求助10
10秒前
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301397
求助须知:如何正确求助?哪些是违规求助? 2936097
关于积分的说明 8476096
捐赠科研通 2609905
什么是DOI,文献DOI怎么找? 1424910
科研通“疑难数据库(出版商)”最低求助积分说明 662206
邀请新用户注册赠送积分活动 646213