Multi-stream domain adversarial prototype network for integrated smart roller TBM main bearing fault diagnosis across various low rotating speeds

断层(地质) 方位(导航) 对抗制 领域(数学分析) 计算机科学 实时计算 人工智能 地质学 地震学 数学 数学分析
作者
Xingchen Fu,Keming Jiao,Jianfeng Tao,Chengliang Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:250: 110284-110284
标识
DOI:10.1016/j.ress.2024.110284
摘要

The well-being of tunnel boring machines (TBM) heavily relies on the health status of main bearings, significantly impacting both safety and operational efficiency. Investigating the operation monitoring and diagnosis algorithms of TBM main bearings in practical scenarios with limited fault data and real-time variations in low-speed heavy-load operating conditions poses a research challenge. To solve these issues, a novel domain-adversarial prototype network diagnostic algorithm with a multi-stream fusion feature encoder (MDAPN) based on smart roller monitoring data is proposed. In contrast to existing external vibration monitoring schemes for bearings, monitoring data from smart rollers can mitigate complex external interference and greatly shorten the transmission path of fault sources. The algorithm encompasses a multi-stream fusion feature encoder, domain discriminator, and prototype network classifier. Specifically, the multi-stream fusion feature encoder adopts the two-stream convolutional network to deeply extract the axial-radial fused features of rollers, incorporating shallow statistical feature information. Domain-invariant features are generated based on domain adversarial learning strategies, and the prototype network classifier reduces dependence on target domain samples. An integrated smart roller main bearing fault simulation testbed was built, conducting 6 sets of cross-domain experiments. The proposed method reached an average accuracy of 98.41 % under 5-shot, surpassing the baseline method by 6.57 % at least. This validates that the MDAPN based on smart roller state exhibits excellent fault recognition performance for the main bearing under varying operational conditions with scarce available samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布莱橙发布了新的文献求助10
1秒前
1秒前
吃鱼的猫发布了新的文献求助10
2秒前
于鹏发布了新的文献求助10
2秒前
研友_Z1WvKL完成签到,获得积分10
3秒前
sun发布了新的文献求助10
3秒前
李浩然发布了新的文献求助10
4秒前
Orange应助韩医生采纳,获得10
5秒前
火星啵啵完成签到,获得积分10
5秒前
十万八千完成签到,获得积分10
5秒前
5秒前
十七完成签到 ,获得积分10
6秒前
7秒前
深情安青应助民咕咕嘎采纳,获得10
7秒前
Jane完成签到 ,获得积分10
7秒前
gdeions完成签到,获得积分10
8秒前
yznfly应助加油吧森森采纳,获得50
8秒前
东郭水云发布了新的文献求助10
9秒前
梅梅梅完成签到,获得积分10
9秒前
张津硕关注了科研通微信公众号
10秒前
Rondab应助Rixxed采纳,获得10
10秒前
10秒前
科研小白发布了新的文献求助20
11秒前
Jasper应助十米采纳,获得10
12秒前
statsli完成签到,获得积分10
12秒前
苏大肺雾发布了新的文献求助10
13秒前
大雯仔发布了新的文献求助10
13秒前
夕荀发布了新的文献求助10
13秒前
13秒前
CodeCraft应助木今采纳,获得10
16秒前
killingpaper完成签到,获得积分10
17秒前
ljn完成签到,获得积分10
17秒前
欢喜从霜发布了新的文献求助10
18秒前
大模型应助weinixiong3579采纳,获得20
19秒前
liuminyi完成签到,获得积分10
19秒前
19秒前
李爱国应助李李采纳,获得10
20秒前
xuzhiwei发布了新的文献求助30
20秒前
大雯仔完成签到,获得积分10
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958909
求助须知:如何正确求助?哪些是违规求助? 3505121
关于积分的说明 11122699
捐赠科研通 3236612
什么是DOI,文献DOI怎么找? 1788911
邀请新用户注册赠送积分活动 871431
科研通“疑难数据库(出版商)”最低求助积分说明 802794