Vectorization Method for Remote Sensing Object Segmentation Based on Frame Field Learning: A Case Study of Greenhouses

矢量化(数学) 计算机科学 帧(网络) 分割 温室 人工智能 领域(数学) 计算机视觉 对象(语法) 遥感 图像分割 像素 计算机图形学(图像) 地质学 电信 数学 并行计算 园艺 纯数学 生物
作者
Ling Yao,Yuxiang Lu,Tang Liu,Hou Jiang,Chenghu Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14
标识
DOI:10.1109/tgrs.2024.3403425
摘要

Deep learning technologies have significantly advanced object information extraction from remote sensing data in recent years, achieving broad application across various industrial sectors. However, information loss exists between remote sensing object raster segmentation and geographic information vector mapping, making it challenging to directly apply raster extraction results to vector mapping. This study, taking the automatic extraction of greenhouses based on remote sensing imagery as an example, proposes a vectorization method for remote sensing object segmentation based on frame field. This method bridges the gap between the object pixel segmentation process and the mask vectorization process through the frame field information outputted by the network, resulting in smoother and more regular vector extraction results. To validate the effectiveness of our framework, we introduce the first high-precision greenhouse vector boundary dataset. Extensive experiments demonstrate that our method significantly mitigates the information loss issue prevalent in traditional vectorization processes, achieving a 5.05% improvement in IoU, a 6.06% increase in recall, and a 5.54% reduction in maximum angular error compared to simple vectorization schemes. It outputs more regular greenhouse vector plots, where the precision of the frame field plays a crucial role in the final vectorization quality. This research offers a unique and practical solution, converting remote sensing object segmentation into vector maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助陈文娟采纳,获得10
刚刚
越啊完成签到,获得积分10
1秒前
文静的峻熙完成签到,获得积分10
1秒前
Ruby发布了新的文献求助10
1秒前
着急的小松鼠完成签到,获得积分10
1秒前
nicholasgxz完成签到,获得积分10
1秒前
充电宝应助Binbin采纳,获得10
1秒前
1秒前
2秒前
2秒前
4秒前
斯文的斩发布了新的文献求助10
5秒前
5秒前
高高高完成签到 ,获得积分10
5秒前
yar应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
qin希望应助科研通管家采纳,获得10
8秒前
xxxllllll发布了新的文献求助10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
扫地888完成签到 ,获得积分10
8秒前
DijiaXu应助科研通管家采纳,获得10
8秒前
whatever应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
whatever应助科研通管家采纳,获得10
8秒前
8秒前
李健应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
Akim应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
whatever应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得30
9秒前
yar应助科研通管家采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014