Superelastic, ultralight aramid fibre/tannic acid/graphene nanohybrid aerogel constructed using a cross–scale strengthening strategy for rapid and high–flux oil–water separation

材料科学 单宁酸 气凝胶 芳纶 石墨烯 复合材料 纳米技术 纤维 有机化学 化学
作者
Hang Lu,Yalei Wang,Yue Yin,H.M. Zhang,Lei Han,Xiangyu Liu,Jinfang Wu,Wenbo Wang
出处
期刊:Surfaces and Interfaces [Elsevier]
卷期号:51: 104608-104608 被引量:4
标识
DOI:10.1016/j.surfin.2024.104608
摘要

Graphene-based aerogels are efficient oil–water separation materials with enormous potential, but their poor mechanical strength and cycling stability limit their applications. A cross-scale strengthening strategy was used to construct aramid fibre (A)/tannic acid (T)/graphene (G) (ATG) aerogel using an in situ electrostatic self-assembly and freeze-drying process. At 95 % of the ultimate compressive strain, the ATG aerogel could withstand a stress of up to 147 kPa and can rebound quickly. The mechanism for the high mechanical strength of the ATG aerogel was explored by structure characterisation and density functional theory (DFT) calculation. A superhydrophobic aerogel (named H-ATG) was prepared by a hydrophobic modification of ATG using a vapor deposition reaction method. The H-ATG aerogel exhibited excellent superoleophilicity/superhydrophobicity with the oil and water contact angles of 0° and 152.48°, respectively. The hydrophobicity of the H-ATG aerogel was stable over the pH range of 1–13 and the temperature range of -80–600 °C. In addition, the aerogel had an ultra-fast absorption speed and excellent absorption capability, rapidly absorbing various oil-based organic solvents up to 101 times its own weight within 5 s. After the absorption of oil or solvents, it could be easily recovered by combustion, distillation or extrusion, and the performance remained relatively unchanged after 10 cycles. When H-ATG was used as a filter to achieve fast and efficient oil–water separation with a high flux of 20,371.83 L·h−1·g−1. Therefore, the H-ATG aerogel has excellent potential for applications in the oil–water separation and the purification of oily wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
珊珊发布了新的文献求助10
刚刚
kkkkkboat完成签到,获得积分10
刚刚
gg完成签到,获得积分20
刚刚
宋佳完成签到,获得积分10
1秒前
1秒前
子衿发布了新的文献求助10
1秒前
东方天奇完成签到 ,获得积分10
2秒前
DTS发布了新的文献求助10
2秒前
英俊的铭应助星川采纳,获得10
2秒前
3秒前
Robin发布了新的文献求助10
3秒前
Ava应助ff采纳,获得10
3秒前
李爱国应助前男友采纳,获得10
3秒前
3秒前
3秒前
4秒前
young完成签到,获得积分10
5秒前
yznfly举报一饮吞江河求助涉嫌违规
5秒前
5秒前
Windsea发布了新的文献求助10
5秒前
5秒前
5秒前
王昭发布了新的文献求助10
6秒前
huhu发布了新的文献求助10
7秒前
清爽映之完成签到,获得积分10
8秒前
禹宛白发布了新的文献求助10
8秒前
传奇3应助DTS采纳,获得10
8秒前
hhhyyyy完成签到,获得积分10
8秒前
笨蛋搞笑女完成签到 ,获得积分10
9秒前
NA完成签到,获得积分20
10秒前
WNL发布了新的文献求助10
10秒前
11秒前
研友_Lpawrn发布了新的文献求助20
12秒前
12秒前
13秒前
14秒前
14秒前
打打应助罗拉采纳,获得10
14秒前
毛万良完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802