肠道菌群
高强度间歇训练
认知
内科学
肠-脑轴
内分泌学
医学
生物
免疫学
神经科学
作者
Mei Peng,Ruihan Zou,Sisi Yao,Xiangyuan Meng,Weijia Wu,Fanqi Zeng,Zeyu Chen,Shunling Yuan,Fei Zhao,Wenfeng Liu
出处
期刊:Life Sciences
[Elsevier]
日期:2024-06-25
卷期号:352: 122871-122871
被引量:1
标识
DOI:10.1016/j.lfs.2024.122871
摘要
The gut-brain axis is the communication mechanism between the gut and the central nervous system, and the intestinal flora and lipopolysaccharide (LPS) play a crucial role in this mechanism. Exercise regulates the gut microbiota composition and metabolite production (i.e., LPS). We aimed to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on cognitive function in C57BL/6 J mice through gut-brain axis regulation of gut microbiota composition and LPS displacement. C57BL/6 J male mice were randomly divided into sedentary, HIIT, and MICT groups. After 12 weeks of exercise intervention, the cognitive function of the brain and mRNA levels of related inflammatory factors were measured. RNA sequencing, Golgi staining, intestinal microbial 16 s rDNA sequencing, and ELISA were performed. HIIT and MICT affect brain cognitive function by regulating the gut microbiota composition and its metabolite, LPS, through the gut microbiota-gut-brain axis. HIIT is suspected to have a risk: it can induce "intestinal leakage" by regulating intestinal permeability-related microbiota, resulting in excessive LPS in the blood and brain and activating M1 microglia in the brain, leading to reduced dendritic spine density and affecting cognitive function. This study revealed a potential link between changes in the gut microbiota and cognitive function. It highlighted the possible risk of HIIT in reducing dendritic spine density and affecting cognitive function.
科研通智能强力驱动
Strongly Powered by AbleSci AI