Two-stage zero-shot sparse hashing with missing labels for cross-modal retrieval

散列函数 计算机科学 判别式 模式识别(心理学) 人工智能 特征哈希 分类器(UML) 缺少数据 相似性(几何) 双重哈希 数据挖掘 哈希表 机器学习 图像(数学) 计算机安全
作者
Kailing Yong,Zhenqiu Shu,Hongbin Wang,Zhengtao Yu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:155: 110717-110717
标识
DOI:10.1016/j.patcog.2024.110717
摘要

Recently, zero-shot cross-modal hashing has gained significant popularity due to its ability to effectively realize the retrieval of emerging concepts within multimedia data. Although the existing approaches have shown impressive results, the following limitations still need to be solved: (1) Labels in large-scale multimodal datasets in real scenes are usually incomplete or partially missing. (2) The existing methods ignore the influence of features-wise low-level similarity and label distribution on retrieval performance. (3) The representation ability of dense hash codes limits its discriminative potential. To solve these issues, we introduce an effective cross-modal retrieval framework called two-stage zero-shot sparse hashing with missing labels (TZSHML). Specifically, we learn a classifier through the partially known labeled samples to predict the labels of unlabeled data. Then, we use the reliable information in the correctly marked labels to recover the missing labels. The predicted and recovered labels are combined to obtain more accurate labels for the samples with missing labels. In addition, we employ sample-wise fine-grained similarity and cluster-wise similarity to learn hash codes. Therefore, TZSHML ensures that more samples with similar semantics are clustered together. Besides, we apply high-dimensional sparse hash codes to explore richer semantic information. Finally, the drift and interaction terms are introduced into the learning of the hash function to further narrow the gap between different modalities. Extensive experimental results demonstrate the competitiveness of our approach over other state-of-the-art methods in zero-shot retrieval scenarios with missing labels. The source code of the work will be released later.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石头发布了新的文献求助10
2秒前
Jiangpeng Wu完成签到 ,获得积分10
3秒前
今后应助锤子姐采纳,获得10
3秒前
4秒前
读者完成签到,获得积分10
5秒前
科研鬼才发布了新的文献求助10
7秒前
7秒前
xliang233完成签到,获得积分10
8秒前
隐形曼青应助乐观百合采纳,获得10
9秒前
9秒前
9秒前
汉堡包应助iday采纳,获得10
10秒前
12秒前
hahahalha完成签到,获得积分10
13秒前
慕青应助111采纳,获得10
14秒前
星亚唐发布了新的文献求助10
14秒前
15秒前
xliang233发布了新的文献求助10
15秒前
17秒前
17秒前
18秒前
20秒前
bmj完成签到 ,获得积分10
20秒前
汉堡包应助Tigher采纳,获得10
21秒前
锤子姐发布了新的文献求助10
21秒前
dongjy完成签到,获得积分10
23秒前
飞云发布了新的文献求助10
25秒前
SciGPT应助费雪卉采纳,获得10
25秒前
25秒前
隐形曼青应助阿信必发JACS采纳,获得10
26秒前
花笙米完成签到,获得积分10
27秒前
29秒前
111完成签到 ,获得积分10
30秒前
每念至此完成签到,获得积分10
30秒前
32秒前
gugu发布了新的文献求助10
35秒前
星亚唐完成签到,获得积分10
39秒前
吴糖完成签到,获得积分10
41秒前
wcwc12138完成签到,获得积分10
42秒前
Fine完成签到,获得积分10
45秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997687
求助须知:如何正确求助?哪些是违规求助? 3537226
关于积分的说明 11271044
捐赠科研通 3276377
什么是DOI,文献DOI怎么找? 1806965
邀请新用户注册赠送积分活动 883609
科研通“疑难数据库(出版商)”最低求助积分说明 809975