清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

In Silico Prediction of ERRα Agonists Based on Combined Features and Stacking Ensemble Method

虚拟筛选 计算机科学 生物信息学 数据挖掘 适用范围 集合(抽象数据类型) 领域(数学分析) 数据集 机器学习 人工智能 计算生物学 药物发现 生物信息学 数量结构-活动关系 数学 化学 生物 生物化学 基因 数学分析 程序设计语言
作者
Jiahao Xu,Zejun Huang,Hao Duan,Weihua Li,Jingyan Zhuang,Le Xiong,Yun Tang,Guixia Liu
出处
期刊:ChemMedChem [Wiley]
卷期号:19 (20)
标识
DOI:10.1002/cmdc.202400298
摘要

Estrogen-related receptor α (ERRα) is considered a very promising target for treating metabolic diseases such as type 2 diabetes. Development of a prediction model to quickly identify potential ERRα agonists can significantly reduce the time spent on virtual screening. In this study, 298 ERRα agonists and numerous nonagonists were collected from various sources to build a new dataset of ERRα agonists. Then a total of 90 models were built using a combination of different algorithms, molecular characterization methods, and data sampling techniques. The consensus model with optimal performance was also validated on the test set (AUC=0.876, BA=0.816) and external validation set (AUC=0.867, BA=0.777) based on five selected baseline models. Furthermore, the model's applicability domain and privileged substructures were examined, and the feature importance was analyzed using the SHAP method to help interpret the model. Based on the above, it's hoped that our publicly accessible data, models, codes, and analytical techniques will prove valuable in quick screening and rational designing more novel and potent ERRα agonists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
持卿应助科研通管家采纳,获得10
38秒前
所所应助科研通管家采纳,获得10
38秒前
持卿应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
持卿应助科研通管家采纳,获得10
38秒前
打打应助科研通管家采纳,获得10
38秒前
持卿应助科研通管家采纳,获得10
38秒前
持卿应助科研通管家采纳,获得10
38秒前
持卿应助科研通管家采纳,获得10
38秒前
狂野丹翠应助科研通管家采纳,获得10
38秒前
卜哥完成签到 ,获得积分10
50秒前
56秒前
FashionBoy应助盈盈采纳,获得10
1分钟前
weiwei发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
孤独太清发布了新的文献求助10
1分钟前
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
絮尘发布了新的文献求助10
2分钟前
欢呼亦绿完成签到,获得积分10
2分钟前
苗条白枫完成签到 ,获得积分10
2分钟前
wxq完成签到,获得积分10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
milu完成签到,获得积分10
2分钟前
2分钟前
milu发布了新的文献求助10
2分钟前
wakawaka完成签到 ,获得积分10
3分钟前
3分钟前
莨菪发布了新的文献求助10
3分钟前
tt完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715057
求助须知:如何正确求助?哪些是违规求助? 5229826
关于积分的说明 15273985
捐赠科研通 4866116
什么是DOI,文献DOI怎么找? 2612707
邀请新用户注册赠送积分活动 1562912
关于科研通互助平台的介绍 1520175