Cost-sensitive stacking ensemble learning for company financial distress prediction

财务困境 堆积 计算机科学 集成学习 苦恼 财务 机器学习 人工智能 业务 心理学 金融体系 化学 临床心理学 有机化学
作者
Shanshan Wang,Guotai Chi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124525-124525
标识
DOI:10.1016/j.eswa.2024.124525
摘要

Financial distress prediction (FDP) is a topic that has received wide attention in the finance sector and data mining field. Applications of combining cost-sensitive learning with classification models to address the FDP problem have been intensely attracted. However, few combined cost-sensitive learning and Stacking to predict financial distress. In this article, a cost-sensitive learning method for FDP, namely cost-sensitive stacking (CSStacking), is put forward. In this work, a two-phase feature selection method is used to select the optimal feature subset. A CSStacking ensemble model is developed with selected features to make a final prediction. The paired T test and non-parametric Wilcoxon test are employed to check the significant differences between CSStacking and benchmark models. An experiment over Chinese listed company dataset is designed to investigate the effectiveness of CSStacking. The experimental results prove that CSStacking can forecast listed companies' financial distress five years ahead and improves the identification rate of financially distressed companies, highlighting its potential to reduce economic losses caused by misclassifying financially distressed companies. The results of comparing CSStacking with four types of benchmark models show that CSStacking performs significantly better than benchmark models. Furthermore, the findings illustrate that "asset-liability ratio", "current ratio", "quick ratio", and "industry prosperity index" are critical variables in predicting financial distress for Chinese listed companies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7lanxiong发布了新的文献求助10
1秒前
热心的网民C完成签到,获得积分10
2秒前
眼里有星辰完成签到,获得积分10
2秒前
万能图书馆应助彩色宛筠采纳,获得10
2秒前
2秒前
星辰大海应助星星采纳,获得10
4秒前
米粒完成签到,获得积分10
5秒前
深情的mewmew完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
7秒前
Emmmm完成签到,获得积分20
7秒前
9秒前
wanci应助岸在海的深处采纳,获得10
9秒前
9秒前
12334发布了新的文献求助10
9秒前
852应助欣慰的茉莉采纳,获得10
9秒前
热心的迎曼完成签到 ,获得积分10
11秒前
7lanxiong完成签到,获得积分10
12秒前
12秒前
13秒前
w1完成签到,获得积分10
13秒前
13秒前
111发布了新的文献求助10
13秒前
13秒前
Hao完成签到,获得积分10
14秒前
可罗雀完成签到,获得积分10
14秒前
小鹿发布了新的文献求助10
14秒前
ppjkq1发布了新的文献求助10
14秒前
14秒前
浅浅发布了新的文献求助10
15秒前
冷酷傲易发布了新的文献求助10
16秒前
16秒前
天真的酒窝应助11111采纳,获得10
16秒前
HAOKEE发布了新的文献求助10
17秒前
17秒前
19秒前
19秒前
Ava应助笨笨从凝采纳,获得10
19秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051673
求助须知:如何正确求助?哪些是违规求助? 2708949
关于积分的说明 7415188
捐赠科研通 2353340
什么是DOI,文献DOI怎么找? 1245507
科研通“疑难数据库(出版商)”最低求助积分说明 605743
版权声明 595855