Cost-sensitive stacking ensemble learning for company financial distress prediction

财务困境 堆积 计算机科学 集成学习 苦恼 财务 机器学习 人工智能 业务 心理学 金融体系 化学 临床心理学 有机化学
作者
Shanshan Wang,Guotai Chi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124525-124525
标识
DOI:10.1016/j.eswa.2024.124525
摘要

Financial distress prediction (FDP) is a topic that has received wide attention in the finance sector and data mining field. Applications of combining cost-sensitive learning with classification models to address the FDP problem have been intensely attracted. However, few combined cost-sensitive learning and Stacking to predict financial distress. In this article, a cost-sensitive learning method for FDP, namely cost-sensitive stacking (CSStacking), is put forward. In this work, a two-phase feature selection method is used to select the optimal feature subset. A CSStacking ensemble model is developed with selected features to make a final prediction. The paired T test and non-parametric Wilcoxon test are employed to check the significant differences between CSStacking and benchmark models. An experiment over Chinese listed company dataset is designed to investigate the effectiveness of CSStacking. The experimental results prove that CSStacking can forecast listed companies' financial distress five years ahead and improves the identification rate of financially distressed companies, highlighting its potential to reduce economic losses caused by misclassifying financially distressed companies. The results of comparing CSStacking with four types of benchmark models show that CSStacking performs significantly better than benchmark models. Furthermore, the findings illustrate that "asset-liability ratio", "current ratio", "quick ratio", and "industry prosperity index" are critical variables in predicting financial distress for Chinese listed companies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我要发sci完成签到,获得积分10
1秒前
天天向上完成签到 ,获得积分10
1秒前
飞飞发布了新的文献求助10
1秒前
lee发布了新的文献求助10
1秒前
摸鱼鱼完成签到,获得积分10
2秒前
大模型应助靓丽的采白采纳,获得30
2秒前
bkagyin应助tanglu采纳,获得200
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
害怕的冷菱完成签到,获得积分10
4秒前
冬菊完成签到 ,获得积分10
5秒前
7秒前
超级无敌万能小金毛完成签到,获得积分10
7秒前
8秒前
XWY完成签到,获得积分10
8秒前
桃掉烦恼发布了新的文献求助10
8秒前
8秒前
11秒前
11秒前
12秒前
12秒前
13秒前
gzt完成签到,获得积分10
14秒前
orixero应助苏鱼采纳,获得10
14秒前
金子悠月完成签到,获得积分10
15秒前
15秒前
深情安青应助fmx采纳,获得10
18秒前
18秒前
18秒前
破灭圆舞曲完成签到,获得积分10
19秒前
19秒前
23秒前
23秒前
24秒前
Nn完成签到 ,获得积分10
24秒前
纯牛马完成签到,获得积分10
25秒前
djbj2022完成签到,获得积分10
25秒前
27秒前
27秒前
lyyyyyy完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952646
求助须知:如何正确求助?哪些是违规求助? 3498064
关于积分的说明 11090366
捐赠科研通 3228670
什么是DOI,文献DOI怎么找? 1785032
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349