Cost-sensitive stacking ensemble learning for company financial distress prediction

财务困境 堆积 计算机科学 集成学习 苦恼 财务 机器学习 人工智能 业务 心理学 金融体系 化学 临床心理学 有机化学
作者
Shanshan Wang,Guotai Chi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124525-124525
标识
DOI:10.1016/j.eswa.2024.124525
摘要

Financial distress prediction (FDP) is a topic that has received wide attention in the finance sector and data mining field. Applications of combining cost-sensitive learning with classification models to address the FDP problem have been intensely attracted. However, few combined cost-sensitive learning and Stacking to predict financial distress. In this article, a cost-sensitive learning method for FDP, namely cost-sensitive stacking (CSStacking), is put forward. In this work, a two-phase feature selection method is used to select the optimal feature subset. A CSStacking ensemble model is developed with selected features to make a final prediction. The paired T test and non-parametric Wilcoxon test are employed to check the significant differences between CSStacking and benchmark models. An experiment over Chinese listed company dataset is designed to investigate the effectiveness of CSStacking. The experimental results prove that CSStacking can forecast listed companies' financial distress five years ahead and improves the identification rate of financially distressed companies, highlighting its potential to reduce economic losses caused by misclassifying financially distressed companies. The results of comparing CSStacking with four types of benchmark models show that CSStacking performs significantly better than benchmark models. Furthermore, the findings illustrate that "asset-liability ratio", "current ratio", "quick ratio", and "industry prosperity index" are critical variables in predicting financial distress for Chinese listed companies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助doo采纳,获得10
1秒前
1秒前
Hou发布了新的文献求助30
2秒前
2秒前
2秒前
4秒前
Melody完成签到,获得积分10
4秒前
陶醉的妖丽完成签到 ,获得积分10
4秒前
我的副本完成签到,获得积分10
4秒前
小个发布了新的文献求助10
5秒前
好困发布了新的文献求助50
6秒前
于于发布了新的文献求助10
6秒前
6秒前
Cynthia完成签到,获得积分10
6秒前
田様应助孔曼卉采纳,获得10
6秒前
充电宝应助MingqingFang采纳,获得10
7秒前
8秒前
8秒前
充电宝应助wjywjy采纳,获得10
8秒前
Dsivan发布了新的文献求助10
8秒前
9秒前
WWXWWX发布了新的文献求助10
9秒前
古娜拉柔完成签到,获得积分10
9秒前
完美世界应助lei采纳,获得10
9秒前
luuu完成签到,获得积分10
9秒前
小白发布了新的文献求助10
11秒前
CP小橙子完成签到 ,获得积分10
11秒前
打打应助草莓莓莓采纳,获得10
11秒前
太叔觅松完成签到,获得积分10
12秒前
12秒前
NiMing发布了新的文献求助10
12秒前
麻辣香郭完成签到 ,获得积分10
13秒前
yyhgyg发布了新的文献求助10
13秒前
潜竹发布了新的文献求助10
13秒前
郭伟完成签到 ,获得积分10
15秒前
18秒前
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206565
求助须知:如何正确求助?哪些是违规求助? 2856045
关于积分的说明 8102101
捐赠科研通 2521097
什么是DOI,文献DOI怎么找? 1354139
科研通“疑难数据库(出版商)”最低求助积分说明 641924
邀请新用户注册赠送积分活动 613167