Cost-sensitive stacking ensemble learning for company financial distress prediction

财务困境 堆积 计算机科学 集成学习 苦恼 财务 机器学习 人工智能 业务 心理学 金融体系 化学 临床心理学 有机化学
作者
Shanshan Wang,Guotai Chi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124525-124525
标识
DOI:10.1016/j.eswa.2024.124525
摘要

Financial distress prediction (FDP) is a topic that has received wide attention in the finance sector and data mining field. Applications of combining cost-sensitive learning with classification models to address the FDP problem have been intensely attracted. However, few combined cost-sensitive learning and Stacking to predict financial distress. In this article, a cost-sensitive learning method for FDP, namely cost-sensitive stacking (CSStacking), is put forward. In this work, a two-phase feature selection method is used to select the optimal feature subset. A CSStacking ensemble model is developed with selected features to make a final prediction. The paired T test and non-parametric Wilcoxon test are employed to check the significant differences between CSStacking and benchmark models. An experiment over Chinese listed company dataset is designed to investigate the effectiveness of CSStacking. The experimental results prove that CSStacking can forecast listed companies' financial distress five years ahead and improves the identification rate of financially distressed companies, highlighting its potential to reduce economic losses caused by misclassifying financially distressed companies. The results of comparing CSStacking with four types of benchmark models show that CSStacking performs significantly better than benchmark models. Furthermore, the findings illustrate that "asset-liability ratio", "current ratio", "quick ratio", and "industry prosperity index" are critical variables in predicting financial distress for Chinese listed companies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助paradeYH采纳,获得10
1秒前
1秒前
xun发布了新的文献求助100
1秒前
大模型应助斯文明杰采纳,获得10
2秒前
3秒前
WJane完成签到,获得积分10
3秒前
张张发布了新的文献求助10
4秒前
4秒前
4秒前
心心完成签到,获得积分10
5秒前
沉默傲芙完成签到,获得积分0
5秒前
6秒前
6秒前
楠楠发布了新的文献求助10
6秒前
apollo3232完成签到,获得积分0
7秒前
罗先生完成签到,获得积分10
9秒前
坤坤蹦蹦跳跳完成签到,获得积分10
9秒前
uil发布了新的文献求助10
10秒前
善学以致用应助兮颜采纳,获得10
11秒前
灵泽发布了新的文献求助10
11秒前
夏雪儿发布了新的文献求助10
12秒前
14秒前
执着的秋柳完成签到,获得积分20
15秒前
16秒前
Mess完成签到,获得积分10
16秒前
楠楠完成签到,获得积分10
17秒前
狂野静曼发布了新的文献求助10
17秒前
111发布了新的文献求助10
18秒前
Dado完成签到,获得积分10
19秒前
19秒前
可靠三问完成签到 ,获得积分10
20秒前
尊敬莫茗完成签到,获得积分10
22秒前
23秒前
科研通AI6应助陈道哥采纳,获得10
24秒前
24秒前
兮颜发布了新的文献求助10
24秒前
24秒前
惠惠完成签到 ,获得积分20
27秒前
111清发布了新的文献求助10
28秒前
完美世界应助迷人绿蕊采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633044
求助须知:如何正确求助?哪些是违规求助? 4029172
关于积分的说明 12466463
捐赠科研通 3715416
什么是DOI,文献DOI怎么找? 2050092
邀请新用户注册赠送积分活动 1081655
科研通“疑难数据库(出版商)”最低求助积分说明 963994