Cost-sensitive stacking ensemble learning for company financial distress prediction

财务困境 堆积 计算机科学 集成学习 苦恼 财务 机器学习 人工智能 业务 心理学 金融体系 化学 临床心理学 有机化学
作者
Shanshan Wang,Guotai Chi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124525-124525
标识
DOI:10.1016/j.eswa.2024.124525
摘要

Financial distress prediction (FDP) is a topic that has received wide attention in the finance sector and data mining field. Applications of combining cost-sensitive learning with classification models to address the FDP problem have been intensely attracted. However, few combined cost-sensitive learning and Stacking to predict financial distress. In this article, a cost-sensitive learning method for FDP, namely cost-sensitive stacking (CSStacking), is put forward. In this work, a two-phase feature selection method is used to select the optimal feature subset. A CSStacking ensemble model is developed with selected features to make a final prediction. The paired T test and non-parametric Wilcoxon test are employed to check the significant differences between CSStacking and benchmark models. An experiment over Chinese listed company dataset is designed to investigate the effectiveness of CSStacking. The experimental results prove that CSStacking can forecast listed companies' financial distress five years ahead and improves the identification rate of financially distressed companies, highlighting its potential to reduce economic losses caused by misclassifying financially distressed companies. The results of comparing CSStacking with four types of benchmark models show that CSStacking performs significantly better than benchmark models. Furthermore, the findings illustrate that "asset-liability ratio", "current ratio", "quick ratio", and "industry prosperity index" are critical variables in predicting financial distress for Chinese listed companies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今北完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
123发布了新的文献求助10
2秒前
科研通AI5应助kkc采纳,获得10
2秒前
小马甲应助小叶间静脉采纳,获得10
2秒前
呱牛完成签到 ,获得积分10
3秒前
3秒前
科研通AI6应助SJHHXX采纳,获得10
3秒前
4秒前
yisoo发布了新的文献求助10
4秒前
5秒前
77kk发布了新的文献求助10
5秒前
科研通AI2S应助高须杨采纳,获得10
5秒前
awu完成签到 ,获得积分10
5秒前
PP完成签到,获得积分10
5秒前
杜天彬发布了新的文献求助10
6秒前
lbt1686666发布了新的文献求助10
6秒前
6秒前
浮游应助jy采纳,获得10
7秒前
彭于晏应助伤心的大亩猪采纳,获得10
8秒前
科研通AI6应助123采纳,获得10
8秒前
9秒前
9秒前
9秒前
清爽老九发布了新的文献求助10
9秒前
AYJ完成签到,获得积分10
10秒前
11秒前
12秒前
anhui发布了新的文献求助10
12秒前
领导范儿应助修仙梅采纳,获得10
12秒前
13秒前
WuMengyao发布了新的文献求助10
13秒前
嘉心糖发布了新的文献求助300
13秒前
WBC完成签到,获得积分20
13秒前
14秒前
深情安青应助顺心成仁采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123034
求助须知:如何正确求助?哪些是违规求助? 4327617
关于积分的说明 13484959
捐赠科研通 4161732
什么是DOI,文献DOI怎么找? 2281010
邀请新用户注册赠送积分活动 1282501
关于科研通互助平台的介绍 1221550