A radiomics-boosted deep-learning for risk assessment of synchronous peritoneal metastasis in colorectal cancer

医学 结直肠癌 深度学习 人工智能 无线电技术 特征(语言学) 机器学习 神经组阅片室 放射科 癌症 内科学 计算机科学 神经学 精神科 语言学 哲学
作者
Ding Zhang,BingShu Zheng,Liuwei Xu,YiCong Wu,Chen Shen,Shanlei Bao,Zhong-Hua Tan,C. Sun
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01733-5
摘要

Abstract Objectives Synchronous colorectal cancer peritoneal metastasis (CRPM) has a poor prognosis. This study aimed to create a radiomics-boosted deep learning model by PET/CT image for risk assessment of synchronous CRPM. Methods A total of 220 colorectal cancer (CRC) cases were enrolled in this study. We mapped the feature maps (Radiomic feature maps (RFMs)) of radiomic features across CT and PET image patches by a 2D sliding kernel. Based on ResNet50, a radiomics-boosted deep learning model was trained using PET/CT image patches and RFMs. Besides that, we explored whether the peritumoral region contributes to the assessment of CRPM. In this study, the performance of each model was evaluated by the area under the curves (AUC). Results The AUCs of the radiomics-boosted deep learning model in the training, internal, external, and all validation datasets were 0.926 (95% confidence interval (CI): 0.874–0.978), 0.897 (95% CI: 0.801–0.994), 0.885 (95% CI: 0.795–0.975), and 0.889 (95% CI: 0.823–0.954), respectively. This model exhibited consistency in the calibration curve, the Delong test and IDI identified it as the most predictive model. Conclusions The radiomics-boosted deep learning model showed superior estimated performance in preoperative prediction of synchronous CRPM from pre-treatment PET/CT, offering potential assistance in the development of more personalized treatment methods and follow-up plans. Critical relevance statement The onset of synchronous colorectal CRPM is insidious, and using a radiomics-boosted deep learning model to assess the risk of CRPM before treatment can help make personalized clinical treatment decisions or choose more sensitive follow-up plans. Key Points Prognosis for patients with CRPM is bleak, and early detection poses challenges. The synergy between radiomics and deep learning proves advantageous in evaluating CRPM. The radiomics-boosted deep-learning model proves valuable in tailoring treatment approaches for CRC patients. Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陌桑子完成签到 ,获得积分10
7秒前
wjswift完成签到,获得积分10
10秒前
18秒前
阳光友蕊完成签到 ,获得积分10
19秒前
21秒前
平常山河完成签到 ,获得积分10
26秒前
qiaobaqiao完成签到 ,获得积分10
28秒前
NexusExplorer应助一个小胖子采纳,获得10
28秒前
熊二完成签到,获得积分10
29秒前
缺粥完成签到 ,获得积分10
35秒前
微生完成签到 ,获得积分10
39秒前
Tina完成签到 ,获得积分10
39秒前
昴星引路完成签到 ,获得积分10
46秒前
logolush完成签到 ,获得积分10
52秒前
立仔完成签到 ,获得积分10
53秒前
56秒前
1分钟前
华仔应助Robert采纳,获得10
1分钟前
Herbs完成签到 ,获得积分10
1分钟前
1分钟前
昴星引路完成签到 ,获得积分10
1分钟前
Ava应助一个小胖子采纳,获得10
1分钟前
夏瑞发布了新的文献求助10
1分钟前
怡心亭完成签到 ,获得积分10
1分钟前
LT完成签到 ,获得积分10
1分钟前
wangxiaoyating完成签到,获得积分10
1分钟前
meier1206发布了新的文献求助10
1分钟前
碧蓝巧荷完成签到 ,获得积分10
1分钟前
如意的馒头完成签到 ,获得积分10
1分钟前
1分钟前
Robert发布了新的文献求助10
1分钟前
emxzemxz完成签到 ,获得积分10
1分钟前
1分钟前
神说要有光完成签到 ,获得积分10
1分钟前
Chloe完成签到 ,获得积分10
1分钟前
jojo665完成签到 ,获得积分10
1分钟前
1分钟前
isedu完成签到,获得积分10
1分钟前
徐涛完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294696
求助须知:如何正确求助?哪些是违规求助? 2930545
关于积分的说明 8446237
捐赠科研通 2602848
什么是DOI,文献DOI怎么找? 1420743
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643443