A radiomics-boosted deep-learning for risk assessment of synchronous peritoneal metastasis in colorectal cancer

医学 结直肠癌 无线电技术 转移 肿瘤科 介入放射学 神经组阅片室 放射科 癌症 内科学 神经学 精神科
作者
Ding Zhang,BingShu Zheng,Liuwei Xu,YiCong Wu,Chen Shen,Shanlei Bao,Zhong-Hua Tan,ChunFeng Sun
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1) 被引量:1
标识
DOI:10.1186/s13244-024-01733-5
摘要

Synchronous colorectal cancer peritoneal metastasis (CRPM) has a poor prognosis. This study aimed to create a radiomics-boosted deep learning model by PET/CT image for risk assessment of synchronous CRPM. A total of 220 colorectal cancer (CRC) cases were enrolled in this study. We mapped the feature maps (Radiomic feature maps (RFMs)) of radiomic features across CT and PET image patches by a 2D sliding kernel. Based on ResNet50, a radiomics-boosted deep learning model was trained using PET/CT image patches and RFMs. Besides that, we explored whether the peritumoral region contributes to the assessment of CRPM. In this study, the performance of each model was evaluated by the area under the curves (AUC). The AUCs of the radiomics-boosted deep learning model in the training, internal, external, and all validation datasets were 0.926 (95% confidence interval (CI): 0.874-0.978), 0.897 (95% CI: 0.801-0.994), 0.885 (95% CI: 0.795-0.975), and 0.889 (95% CI: 0.823-0.954), respectively. This model exhibited consistency in the calibration curve, the Delong test and IDI identified it as the most predictive model. The radiomics-boosted deep learning model showed superior estimated performance in preoperative prediction of synchronous CRPM from pre-treatment PET/CT, offering potential assistance in the development of more personalized treatment methods and follow-up plans. The onset of synchronous colorectal CRPM is insidious, and using a radiomics-boosted deep learning model to assess the risk of CRPM before treatment can help make personalized clinical treatment decisions or choose more sensitive follow-up plans. Prognosis for patients with CRPM is bleak, and early detection poses challenges. The synergy between radiomics and deep learning proves advantageous in evaluating CRPM. The radiomics-boosted deep-learning model proves valuable in tailoring treatment approaches for CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助沙洲采纳,获得10
刚刚
1秒前
3秒前
lvlv发布了新的文献求助10
4秒前
8Sen发布了新的文献求助10
4秒前
萌萌子完成签到,获得积分10
5秒前
千寻完成签到,获得积分0
5秒前
宁宁完成签到,获得积分10
7秒前
情怀应助dzw采纳,获得10
7秒前
Lucas应助波波采纳,获得10
7秒前
糊涂的觅海完成签到 ,获得积分10
8秒前
shangyu66发布了新的文献求助10
9秒前
ojl888完成签到 ,获得积分10
10秒前
11秒前
MLee完成签到 ,获得积分10
12秒前
12秒前
香蕉觅云应助孙远采纳,获得10
13秒前
13秒前
zayn发布了新的文献求助30
13秒前
14秒前
研友_V8RmmZ发布了新的文献求助30
15秒前
洋溢完成签到,获得积分10
15秒前
大力出奇迹完成签到,获得积分10
15秒前
16秒前
Ling99完成签到 ,获得积分10
16秒前
17秒前
风起青禾发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
今后应助lvlv采纳,获得10
19秒前
舒心怀寒发布了新的文献求助10
21秒前
21秒前
绵绵发布了新的文献求助10
22秒前
22秒前
波波发布了新的文献求助10
22秒前
欧皇完成签到,获得积分10
22秒前
研友_V8RmmZ完成签到,获得积分10
22秒前
miqiqi完成签到,获得积分10
24秒前
karry完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322482
求助须知:如何正确求助?哪些是违规求助? 4463967
关于积分的说明 13891783
捐赠科研通 4355293
什么是DOI,文献DOI怎么找? 2392254
邀请新用户注册赠送积分活动 1385941
关于科研通互助平台的介绍 1355632