亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A radiomics-boosted deep-learning for risk assessment of synchronous peritoneal metastasis in colorectal cancer

医学 结直肠癌 无线电技术 转移 肿瘤科 介入放射学 神经组阅片室 放射科 癌症 内科学 神经学 精神科
作者
Ding Zhang,BingShu Zheng,Liuwei Xu,YiCong Wu,Chen Shen,Shanlei Bao,Zhong-Hua Tan,ChunFeng Sun
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1) 被引量:1
标识
DOI:10.1186/s13244-024-01733-5
摘要

Synchronous colorectal cancer peritoneal metastasis (CRPM) has a poor prognosis. This study aimed to create a radiomics-boosted deep learning model by PET/CT image for risk assessment of synchronous CRPM. A total of 220 colorectal cancer (CRC) cases were enrolled in this study. We mapped the feature maps (Radiomic feature maps (RFMs)) of radiomic features across CT and PET image patches by a 2D sliding kernel. Based on ResNet50, a radiomics-boosted deep learning model was trained using PET/CT image patches and RFMs. Besides that, we explored whether the peritumoral region contributes to the assessment of CRPM. In this study, the performance of each model was evaluated by the area under the curves (AUC). The AUCs of the radiomics-boosted deep learning model in the training, internal, external, and all validation datasets were 0.926 (95% confidence interval (CI): 0.874-0.978), 0.897 (95% CI: 0.801-0.994), 0.885 (95% CI: 0.795-0.975), and 0.889 (95% CI: 0.823-0.954), respectively. This model exhibited consistency in the calibration curve, the Delong test and IDI identified it as the most predictive model. The radiomics-boosted deep learning model showed superior estimated performance in preoperative prediction of synchronous CRPM from pre-treatment PET/CT, offering potential assistance in the development of more personalized treatment methods and follow-up plans. The onset of synchronous colorectal CRPM is insidious, and using a radiomics-boosted deep learning model to assess the risk of CRPM before treatment can help make personalized clinical treatment decisions or choose more sensitive follow-up plans. Prognosis for patients with CRPM is bleak, and early detection poses challenges. The synergy between radiomics and deep learning proves advantageous in evaluating CRPM. The radiomics-boosted deep-learning model proves valuable in tailoring treatment approaches for CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
random完成签到,获得积分10
1秒前
xiaohardy完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
freyaaaaa应助科研通管家采纳,获得60
6秒前
浮游应助科研通管家采纳,获得10
6秒前
9秒前
泅渡发布了新的文献求助30
14秒前
刘亦菲暧昧对象完成签到 ,获得积分10
19秒前
科研通AI6应助cen采纳,获得10
20秒前
蝉鸣完成签到,获得积分10
23秒前
飘逸的雁露完成签到,获得积分10
28秒前
木雅阁兮完成签到,获得积分10
37秒前
顾矜应助fdj3121采纳,获得10
38秒前
拿铁小笼包完成签到,获得积分10
41秒前
隐形曼青应助yqq采纳,获得30
44秒前
傻傻的从梦完成签到 ,获得积分10
51秒前
英俊的铭应助DeXu采纳,获得10
51秒前
YangMengJing_完成签到,获得积分10
1分钟前
1分钟前
fdj3121发布了新的文献求助10
1分钟前
1分钟前
明昼完成签到,获得积分10
1分钟前
王意博发布了新的文献求助10
1分钟前
小二郎应助欣喜的迎波采纳,获得10
1分钟前
科研通AI6应助糖油果子采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
赘婿应助王意博采纳,获得10
1分钟前
1分钟前
1分钟前
DeXu发布了新的文献求助10
2分钟前
yyd发布了新的文献求助10
2分钟前
AX完成签到,获得积分10
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得30
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522648
求助须知:如何正确求助?哪些是违规求助? 4613539
关于积分的说明 14539027
捐赠科研通 4551262
什么是DOI,文献DOI怎么找? 2494124
邀请新用户注册赠送积分活动 1475098
关于科研通互助平台的介绍 1446489