A radiomics-boosted deep-learning for risk assessment of synchronous peritoneal metastasis in colorectal cancer

医学 结直肠癌 无线电技术 转移 肿瘤科 介入放射学 神经组阅片室 放射科 癌症 内科学 神经学 精神科
作者
Ding Zhang,BingShu Zheng,Liuwei Xu,YiCong Wu,Chen Shen,Shanlei Bao,Zhong-Hua Tan,ChunFeng Sun
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1) 被引量:1
标识
DOI:10.1186/s13244-024-01733-5
摘要

Synchronous colorectal cancer peritoneal metastasis (CRPM) has a poor prognosis. This study aimed to create a radiomics-boosted deep learning model by PET/CT image for risk assessment of synchronous CRPM. A total of 220 colorectal cancer (CRC) cases were enrolled in this study. We mapped the feature maps (Radiomic feature maps (RFMs)) of radiomic features across CT and PET image patches by a 2D sliding kernel. Based on ResNet50, a radiomics-boosted deep learning model was trained using PET/CT image patches and RFMs. Besides that, we explored whether the peritumoral region contributes to the assessment of CRPM. In this study, the performance of each model was evaluated by the area under the curves (AUC). The AUCs of the radiomics-boosted deep learning model in the training, internal, external, and all validation datasets were 0.926 (95% confidence interval (CI): 0.874-0.978), 0.897 (95% CI: 0.801-0.994), 0.885 (95% CI: 0.795-0.975), and 0.889 (95% CI: 0.823-0.954), respectively. This model exhibited consistency in the calibration curve, the Delong test and IDI identified it as the most predictive model. The radiomics-boosted deep learning model showed superior estimated performance in preoperative prediction of synchronous CRPM from pre-treatment PET/CT, offering potential assistance in the development of more personalized treatment methods and follow-up plans. The onset of synchronous colorectal CRPM is insidious, and using a radiomics-boosted deep learning model to assess the risk of CRPM before treatment can help make personalized clinical treatment decisions or choose more sensitive follow-up plans. Prognosis for patients with CRPM is bleak, and early detection poses challenges. The synergy between radiomics and deep learning proves advantageous in evaluating CRPM. The radiomics-boosted deep-learning model proves valuable in tailoring treatment approaches for CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
值得发布了新的文献求助10
1秒前
犹豫靖儿完成签到,获得积分10
1秒前
1秒前
谷子完成签到,获得积分10
2秒前
奋斗灵竹完成签到,获得积分10
2秒前
2秒前
包容又琴完成签到,获得积分10
2秒前
kajimi完成签到,获得积分10
3秒前
Owen应助博修采纳,获得10
3秒前
Jasper应助顺利的唇膏采纳,获得10
3秒前
3秒前
一一完成签到 ,获得积分10
3秒前
二二完成签到,获得积分10
3秒前
机灵的咖啡完成签到,获得积分20
4秒前
韦汉垟发布了新的文献求助10
4秒前
4秒前
重要成仁完成签到,获得积分10
4秒前
kk应助musejie采纳,获得10
4秒前
面壁思过应助热心的笑天采纳,获得30
5秒前
谷子发布了新的文献求助10
5秒前
自由的松发布了新的文献求助10
5秒前
深情安青应助594612采纳,获得10
5秒前
YGTRECE发布了新的文献求助10
5秒前
lily发布了新的文献求助20
5秒前
豪厉害完成签到,获得积分10
5秒前
Lucas应助隐形觅翠采纳,获得10
5秒前
田様应助ljlj采纳,获得10
6秒前
zxx发布了新的文献求助10
6秒前
667发布了新的文献求助10
7秒前
Max哈哈哈发布了新的文献求助10
7秒前
7秒前
Hello应助zombie采纳,获得10
7秒前
哈哈哈6056完成签到,获得积分10
8秒前
8秒前
8秒前
zommen完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
1900发布了新的文献求助10
9秒前
Miki完成签到,获得积分10
10秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974643
求助须知:如何正确求助?哪些是违规求助? 3519094
关于积分的说明 11196979
捐赠科研通 3255182
什么是DOI,文献DOI怎么找? 1797700
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130