GNNGL-PPI: multi-category prediction of protein-protein interactions using graph neural networks based on global graphs and local subgraphs

生物 人工神经网络 计算生物学 图形 计算机科学 人工智能 理论计算机科学
作者
Xin Zeng,Fanfang Meng,Meng‐Liang Wen,Shujuan Li,Yi Li
出处
期刊:BMC Genomics [Springer Nature]
卷期号:25 (1) 被引量:4
标识
DOI:10.1186/s12864-024-10299-x
摘要

Most proteins exert their functions by interacting with other proteins, making the identification of protein-protein interactions (PPI) crucial for understanding biological activities, pathological mechanisms, and clinical therapies. Developing effective and reliable computational methods for predicting PPI can significantly reduce the time-consuming and labor-intensive associated traditional biological experiments. However, accurately identifying the specific categories of protein-protein interactions and improving the prediction accuracy of the computational methods remain dual challenges. To tackle these challenges, we proposed a novel graph neural network method called GNNGL-PPI for multi-category prediction of PPI based on global graphs and local subgraphs. GNNGL-PPI consisted of two main components: using Graph Isomorphism Network (GIN) to extract global graph features from PPI network graph, and employing GIN As Kernel (GIN-AK) to extract local subgraph features from the subgraphs of protein vertices. Additionally, considering the imbalanced distribution of samples in each category within the benchmark datasets, we introduced an Asymmetric Loss (ASL) function to further enhance the predictive performance of the method. Through evaluations on six benchmark test sets formed by three different dataset partitioning algorithms (Random, BFS, DFS), GNNGL-PPI outperformed the state-of-the-art multi-category prediction methods of PPI, as measured by the comprehensive performance evaluation metric F1-measure. Furthermore, interpretability analysis confirmed the effectiveness of GNNGL-PPI as a reliable multi-category prediction method for predicting protein-protein interactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小徐发布了新的文献求助10
2秒前
孔难破发布了新的文献求助10
2秒前
4秒前
梁嘉琦完成签到,获得积分10
7秒前
善学以致用应助zeke采纳,获得10
7秒前
10秒前
lalalala发布了新的文献求助10
10秒前
南风应助飞在夏夜的猫采纳,获得10
12秒前
zeke完成签到,获得积分10
13秒前
13秒前
呀呀呀一完成签到,获得积分10
14秒前
16秒前
Lynn应助联合工程采纳,获得10
17秒前
18秒前
无辜又菡完成签到,获得积分10
20秒前
20秒前
陈富超发布了新的文献求助10
20秒前
20秒前
研友_LapVM8完成签到,获得积分10
22秒前
22秒前
23秒前
吴彦祖发布了新的文献求助10
24秒前
番茄炒蛋完成签到,获得积分10
24秒前
25秒前
无辜又菡发布了新的文献求助10
25秒前
研友_LapVM8发布了新的文献求助10
28秒前
领导范儿应助花花采纳,获得10
30秒前
30秒前
诚心淇发布了新的文献求助10
31秒前
Ava应助艺阳采纳,获得10
31秒前
Tal发布了新的文献求助10
31秒前
失眠的诗蕊应助开放雪旋采纳,获得50
31秒前
32秒前
酷波er应助风趣觅海采纳,获得10
34秒前
34秒前
35秒前
CC发布了新的文献求助30
36秒前
my完成签到,获得积分10
36秒前
赘婿应助nazar采纳,获得10
37秒前
energyharvester完成签到 ,获得积分10
38秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396578
求助须知:如何正确求助?哪些是违规求助? 3006233
关于积分的说明 8820128
捐赠科研通 2693327
什么是DOI,文献DOI怎么找? 1475263
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675628